ﻻ يوجد ملخص باللغة العربية
We show that, in strongly chaotic dynamical systems, the average particle velocity can be calculated analytically by consideration of Brownian dynamics in phase space, the method of images and use of the classical diffusion equation. The method is demonstrated on the simplified Fermi-Ulam accelerator model, which has a mixed phase space with chaotic seas, invariant tori and Kolmogorov-Arnold-Moser (KAM) islands. The calculated average velocities agree well with numerical simulations and with an earlier empirical theory. The procedure can readily be extended to other systems including time-dependent billiards.
In this paper we study the critical behavior of an $N$-component ${phi}^{4}$-model in hyperbolic space, which serves as a model of uniform frustration. We find that this model exhibits a second-order phase transition with an unusual magnetization tex
The chaotic diffusion for particles moving in a time dependent potential well is described by using two different procedures: (i) via direct evolution of the mapping describing the dynamics and ; (ii) by the solution of the diffusion equation. The dy
We characterize a transition from normal to ballistic diffusion in a bouncing ball dynamics. The system is composed of a particle, or an ensemble of non-interacting particles, experiencing elastic collisions with a heavy and periodically moving wall
Motivated by electronic transport in graphene-like structures, we study the diffusion of a classical point particle in Fermi potentials situated on a triangular lattice. We call this system a soft Lorentz gas, as the hard disks in the conventional pe
Two-dimensional magnetic skyrmions are particle-like magnetic domains in magnetic thin films. The kinetic property of the magnetic skyrmions at finite temperature is well described by the Thiele equation, including a stochastic field and a finite mas