ترغب بنشر مسار تعليمي؟ اضغط هنا

Investing for Discovery in Astronomy

145   0   0.0 ( 0 )
 نشر من قبل Joan Najita
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Joan R. Najita




اسأل ChatGPT حول البحث

How should we invest our available resources to best sustain astronomys track record of discovery, established over the past few decades? Two strong hints come from (1) our history of astronomical discoveries and (2) literature citation patterns that reveal how discovery and development activities in science are strong functions of team size. These argue that progress in astronomy hinges on support for a diversity of research efforts in terms of team size, research tools and platforms, and investment strategies that encourage risk taking. These ideas also encourage us to examine the implications of the trend toward big team science and survey science in astronomy over the past few decades, and to reconsider the common assumption that progress in astronomy always means trading up to bigger apertures and facilities. Instead, the considerations above argue that we need a balanced set of investments in small- to large-scale initiatives and team sizes both large and small. Large teams tend to develop existing ideas, whereas small teams are more likely to fuel the future with disruptive discoveries. While large facilities are the value investments that are guaranteed to produce discoveries, smaller facilities are the growth stocks that are likely to deliver the biggest science bang per buck, sometimes with outsize returns. One way to foster the risk taking that fuels discovery is to increase observing opportunity, i.e., create more observing nights and facilitate the exploration of science-ready data.



قيم البحث

اقرأ أيضاً

A community meeting on the topic of Radio Astronomy in the LSST Era was hosted by the National Radio Astronomy Observatory in Charlottesville, VA (2013 May 6--8). The focus of the workshop was on time domain radio astronomy and sky surveys. For the t ime domain, the extent to which radio and visible wavelength observations are required to understand several classes of transients was stressed, but there are also classes of radio transients for which no visible wavelength counterpart is yet known, providing an opportunity for discovery. From the LSST perspective, the LSST is expected to generate as many as 1 million alerts nightly, which will require even more selective specification and identification of the classes and characteristics of transients that can warrant follow up, at radio or any wavelength. The LSST will also conduct a deep survey of the sky, producing a catalog expected to contain over 38 billion objects in it. Deep radio wavelength sky surveys will also be conducted on a comparable time scale, and radio and visible wavelength observations are part of the multi-wavelength approach needed to classify and understand these objects. Radio wavelengths are valuable because they are unaffected by dust obscuration and, for galaxies, contain contributions both from star formation and from active galactic nuclei. The workshop touched on several other topics, on which there was consensus including the placement of other LSST Deep Drilling Fields, inter-operability of software tools, and the challenge of filtering and exploiting the LSST data stream. There were also topics for which there was insufficient time for full discussion or for which no consensus was reached, which included the procedures for following up on LSST observations and the nature for future support of researchers desiring to use LSST data products.
The Laser Interferometer Space Antenna (LISA) will open three decades of gravitational wave (GW) spectrum between 0.1 and 100 mHz, the mHz band. This band is expected to be the richest part of the GW spectrum, in types of sources, numbers of sources, signal-to-noise ratios and discovery potential. When LISA opens the low-frequency window of the gravitational wave spectrum, around 2034, the surge of gravitational-wave astronomy will strongly compel a subsequent mission to further explore the frequency bands of the GW spectrum that can only be accessed from space. The 2020s is the time to start developing technology and studying mission concepts for a large-scale mission to be launched in the 2040s. The mission concept would then be proposed to Astro2030. Only space based missions can access the GW spectrum between 10 nHz and 1 Hz because of the Earths seismic noise. This white paper surveys the science in this band and mission concepts that could accomplish that science. The proposed small scale activity is a technology development program that would support a range of concepts and a mission concept study to choose a specific mission concept for Astro2030. In this white paper, we will refer to a generic GW mission beyond LISA as bLISA.
We present an analysis technique that uses the timing information of Cherenkov images from extensive air showers (EAS). Our emphasis is on distant, or large core distance gamma-ray induced showers at multi-TeV energies. Specifically, combining pixel timing information with an improved direction reconstruction algorithm, leads to improvements in angular and core resolution as large as ~40% and ~30%, respectively, when compared with the same algorithm without the use of timing. Above 10 TeV, this results in an angular resolution approaching 0.05 degrees, together with a core resolution better than ~15 m. The off-axis post-cut gamma-ray acceptance is energy dependent and its full width at half maximum ranges from 4 degrees to 8 degrees. For shower directions that are up to ~6 degrees off-axis, the angular resolution achieved by using timing information is comparable, around 100 TeV, to the on-axis angular resolution. The telescope specifications and layout we describe here are geared towards energies above 10 TeV. However, the methods can in principle be applied to other energies, given suitable telescope parameters. The 5-telescope cell investigated in this study could initially pave the way for a larger array of sparsely spaced telescopes in an effort to push the collection area to >10 km2. These results highlight the potential of a `sparse array approach in effectively opening up the energy range above 10 TeV.
The global climate crisis poses new risks to humanity, and with them, new challenges to the practices of professional astronomy. Avoiding the more catastrophic consequences of global warming by more than 1.5 degrees requires an immediate reduction of greenhouse gas emissions. According to the 2018 United Nations Intergovernmental Panel report, this will necessitate a 45% reduction of emissions by 2030 and net-zero emissions by 2050. Efforts are required at all levels, from the individual to the governmental, and every discipline must find ways to achieve these goals. This will be especially difficult for astronomy with its significant reliance on conference and research travel, among other impacts. However, our long-range planning exercises provide the means to coordinate our response on a variety of levels. We have the opportunity to lead by example, rising to the challenge rather than reacting to external constraints. We explore how astronomy can meet the challenge of a changing climate in clear and responsible ways, such as how we set expectations (for ourselves, our institutions, and our granting agencies) around scientific travel, the organization of conferences, and the design of our infrastructure. We also emphasize our role as reliable communicators of scientific information on a problem that is both human and planetary in scale.
We describe Space Warps, a novel gravitational lens discovery service that yields samples of high purity and completeness through crowd-sourced visual inspection. Carefully produced colour composite images are displayed to volunteers via a web- based classification interface, which records their estimates of the positions of candidate lensed features. Images of simulated lenses, as well as real images which lack lenses, are inserted into the image stream at random intervals; this training set is used to give the volunteers instantaneous feedback on their performance, as well as to calibrate a model of the system that provides dynamical updates to the probability that a classified image contains a lens. Low probability systems are retired from the site periodically, concentrating the sample towards a set of lens candidates. Having divided 160 square degrees of Canada-France-Hawaii Telescope Legacy Survey (CFHTLS) imaging into some 430,000 overlapping 82 by 82 arcsecond tiles and displaying them on the site, we were joined by around 37,000 volunteers who contributed 11 million image classifications over the course of 8 months. This Stage 1 search reduced the sample to 3381 images containing candidates; these were then refined in Stage 2 to yield a sample that we expect to be over 90% complete and 30% pure, based on our analysis of the volunteers performance on training images. We comment on the scalability of the SpaceWarps system to the wide field survey era, based on our projection that searches of 10$^5$ images could be performed by a crowd of 10$^5$ volunteers in 6 days.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا