ترغب بنشر مسار تعليمي؟ اضغط هنا

Space Based Gravitational Wave Astronomy Beyond LISA

109   0   0.0 ( 0 )
 نشر من قبل Guido Mueller
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Laser Interferometer Space Antenna (LISA) will open three decades of gravitational wave (GW) spectrum between 0.1 and 100 mHz, the mHz band. This band is expected to be the richest part of the GW spectrum, in types of sources, numbers of sources, signal-to-noise ratios and discovery potential. When LISA opens the low-frequency window of the gravitational wave spectrum, around 2034, the surge of gravitational-wave astronomy will strongly compel a subsequent mission to further explore the frequency bands of the GW spectrum that can only be accessed from space. The 2020s is the time to start developing technology and studying mission concepts for a large-scale mission to be launched in the 2040s. The mission concept would then be proposed to Astro2030. Only space based missions can access the GW spectrum between 10 nHz and 1 Hz because of the Earths seismic noise. This white paper surveys the science in this band and mission concepts that could accomplish that science. The proposed small scale activity is a technology development program that would support a range of concepts and a mission concept study to choose a specific mission concept for Astro2030. In this white paper, we will refer to a generic GW mission beyond LISA as bLISA.



قيم البحث

اقرأ أيضاً

Since the very beginning of astronomy the location of objects on the sky has been a fundamental observational quantity that has been taken for granted. While precise two dimensional positional information is easy to obtain for observations in the ele ctromagnetic spectrum, the positional accuracy of current and near future gravitational wave detectors is limited to between tens and hundreds of square degrees, which makes it extremely challenging to identify the host galaxies of gravitational wave events or to confidently detect any electromagnetic counterparts. Gravitational wave observations provide information on source properties and distances that is complementary to the information in any associated electromagnetic emission and that is very hard to obtain in any other way. Observing systems with multiple messengers thus has scientific potential much greater than the sum of its parts. A gravitational wave detector with higher angular resolution would significantly increase the prospects for finding the hosts of gravitational wave sources and triggering a multi-messenger follow-up campaign. An observatory with arcminute precision or better could be realised within the Voyage 2050 programme by creating a large baseline interferometer array in space and would have transformative scientific potential. Precise positional information of standard sirens would enable precision measurements of cosmological parameters and offer new insights on structure formation; a high angular resolution gravitational wave observatory would allow the detection of a stochastic background and resolution of the anisotropies within it; it would also allow the study of accretion processes around black holes; and it would have tremendous potential for tests of modified gravity and the discovery of physics beyond the Standard Model.
The past four years have seen a scientific revolution through the birth of a new field: gravitational-wave astronomy. The first detection of gravitational waves---recognised by the 2017 Nobel Prize in Physics---provided unprecedented tests of general relativity while unveiling a previously unknown class of massive black holes, thirty times more massive than the Sun. The subsequent detection of gravitational waves from a merging binary neutron star confirmed the hypothesised connection between binary neutron stars and short gamma-ray bursts while providing an independent measurement of the expansion of the Universe. The discovery enabled precision measurement of the speed of gravity while shedding light on the origin of heavy elements. At the time of writing, the Laser Interferometer Gravitational-wave Observatory (LIGO) and its European partner, Virgo, have published the detection of eleven gravitational-wave events. New, not-yet-published detections are announced on a nearly weekly basis. This fast-growing catalogue of gravitational-wave transients is expected to yield insights into a number of topics, from the equation of state of matter at supra-nuclear densities to the fate of massive stars. The science potential of 3G observatories is enormous, enabling measurements of gravitational waves from the edge of the Universe and precise determination of the neutron star equation of state. Australia is well-positioned to help develop the required technology. The Mid-term Review for the Decadal plan for Australian astronomy 2016-2025 should consider investment in a scoping study for an Australian Gravitational-Wave Pathfinder that develops and validates core technologies required for the global 3G detector network.
A space-based interferometer operating in the previously unexplored mHz gravitational band has tremendous discovery potential. If history is any guide, the opening of a new spectral band will lead to the discovery of entirely new sources and phenomen a. The mHz band is ideally suited to exploring beyond standard model processes in the early universe, and with the sensitivities that can be reached with current technologies, the discovery space for exotic astrophysical systems is vast.
This white paper describes the research and development needed over the next decade to realize Cosmic Explorer, the U.S. node of a future third-generation detector network that will be capable of observing and characterizing compact gravitational-wave sources to cosmological redshifts.
152 - G.H. Janssen 2014
On a time scale of years to decades, gravitational wave (GW) astronomy will become a reality. Low frequency (nanoHz) GWs are detectable through long-term timing observations of the most stable pulsars. Radio observatories worldwide are currently carr ying out observing programmes to detect GWs, with data sets being shared through the International Pulsar Timing Array project. One of the most likely sources of low frequency GWs are supermassive black hole binaries (SMBHBs), detectable as a background due to a large number of binaries, or as continuous or burst emission from individual sources. No GW signal has yet been detected, but stringent constraints are already being placed on galaxy evolution models. The SKA will bring this research to fruition. In this chapter, we describe how timing observations using SKA1 will contribute to detecting GWs, or can confirm a detection if a first signal already has been identified when SKA1 commences observations. We describe how SKA observations will identify the source(s) of a GW signal, search for anisotropies in the background, improve models of galaxy evolution, test theories of gravity, and characterise the early inspiral phase of a SMBHB system. We describe the impact of the large number of millisecond pulsars to be discovered by the SKA; and the observing cadence, observation durations, and instrumentation required to reach the necessary sensitivity. We describe the noise processes that will influence the achievable precision with the SKA. We assume a long-term timing programme using the SKA1-MID array and consider the implications of modifications to the current design. We describe the possible benefits from observations using SKA1-LOW. Finally, we describe GW detection prospects with SKA1 and SKA2, and end with a description of the expectations of GW astronomy.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا