ﻻ يوجد ملخص باللغة العربية
Finite-time coherent sets represent minimally mixing objects in general nonlinear dynamics, and are spatially mobile features that are the most predictable in the medium term. When the dynamical system is subjected to small parameter change, one can ask about the rate of change of (i) the location and shape of the coherent sets, and (ii) the mixing properties (how much more or less mixing), with respect to the parameter. We answer these questions by developing linear response theory for the eigenfunctions of the dynamic Laplace operator, from which one readily obtains the linear response of the corresponding coherent sets. We construct efficient numerical methods based on a recent finite-element approach and provide numerical examples.
The dynamic Laplace operator arises from extending problems of isoperimetry from fixed manifolds to manifolds evolved by general nonlinear dynamics. Eigenfunctions of this operator are used to identify and track finite-time coherent sets, which physi
Transport and mixing properties of aperiodic flows are crucial to a dynamical analysis of the flow, and often have to be carried out with limited information. Finite-time coherent sets are regions of the flow that minimally mix with the remainder of
The long-term average response of observables of chaotic systems to dynamical perturbations can often be predicted using linear response theory, but not all chaotic systems possess a linear response. Macroscopic observables of complex dissipative cha
Finite-time coherent sets inhibit mixing over finite times. The most expensive part of the transfer operator approach to detecting coherent sets is the construction of the operator itself. We present a numerical method based on radial basis function
This paper gives a complete classification of linear repetitivity (LR) for a natural class of aperiodic Euclidean cut and project schemes with convex polytopal windows. Our results cover those cut and project schemes for which the lattice projects de