ﻻ يوجد ملخص باللغة العربية
The dynamic Laplace operator arises from extending problems of isoperimetry from fixed manifolds to manifolds evolved by general nonlinear dynamics. Eigenfunctions of this operator are used to identify and track finite-time coherent sets, which physically manifest in fluid flows as jets, vortices, and more complicated structures. Two robust and efficient finite-element discretisation schemes for numerically computing the dynamic Laplacian were proposed in Froyland & Junge (2018). In this work we consider higher-orde
Finite-time coherent sets represent minimally mixing objects in general nonlinear dynamics, and are spatially mobile features that are the most predictable in the medium term. When the dynamical system is subjected to small parameter change, one can
The stochastic partial differential equation approach to Gaussian processes (GPs) represents Matern GP priors in terms of $n$ finite element basis functions and Gaussian coefficients with sparse precision matrix. Such representations enhance the scal
A numerical scheme is presented for approximating fractional order Poisson problems in two and three dimensions. The scheme is based on reformulating the original problem posed over $Omega$ on the extruded domain $mathcal{C}=Omegatimes[0,infty)$ foll
In this work we formally derive and prove the correctness of the algorithms and data structures in a parallel, distributed-memory, generic finite element framework that supports h-adaptivity on computational domains represented as forest-of-trees. Th
Stokes variational inequalities arise in the formulation of glaciological problems involving contact. Two important examples of such problems are that of the grounding line of a marine ice sheet and the evolution of a subglacial cavity. In general, r