ترغب بنشر مسار تعليمي؟ اضغط هنا

Beyond Born-Oppenheimer approximation in ultracold atomic collisions

107   0   0.0 ( 0 )
 نشر من قبل Alessandro Zenesini
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on deviations beyond the Born-Oppenheimer approximation in the potassium inter-atomic potentials. Identifying three up-to-now unknown $d$-wave Feshbach resonances, we significantly improve the understanding of the $^{39}$K inter-atomic potentials. Combining these observations with the most recent data on known inter- and intra-isotope Feshbach resonances, we show that Born-Oppenheimer corrections can be determined from atomic collisional properties alone and that significant differences between the homo- and heteronuclear case appear.



قيم البحث

اقرأ أيضاً

We study a three-body system, formed by two identical heavy bosons and a light particle, in the Born-Oppenheimer approximation for an arbitrary dimension $D$. We restrict $D$ to the interval $2,<,D,<,4$, and derive the heavy-heavy $D$-dimensional eff ective potential proportional to $1/R^2$ ($R$ is the relative distance between the heavy particles), which is responsible for the Efimov effect. We found that the Efimov states disappear once the critical strength of the heavy-heavy effective potential $1/R^2$ approaches the limit $-(D-2)^2/4$. We obtained the scaling function for the $^{133}$Cs-$^{133}$Cs-$^6$Li system as the limit cycle of the correlation between the energies of two consecutive Efimov states as a function of $D$ and the heavy-light binding energy $E^{D}_2$. In addition, we found that the energy of the $(N+1)^{rm th}$ excited state reaches the two-body continuum independently of the dimension $D$ when $sqrt{E^{D}_2/E_3^{(N)}}=0.89$, where $E_3^{(N)}$ is the $N^{rm th}$ excited three-body binding energy.
We calculate the relative permittivity of a cold atomic gas under weak probe illumination, up to second order in the density. Within the framework of a diagrammatic representation method, we identify all the second order diagrams that enter into the description of the relative permittivity for coherent light transmission. These diagrams originate from pairwise position correlation and recurrent scattering. Using coupled dipole equations, we numerically simulate the coherent transmission with scalar and vector waves, and find good agreement with the perturbative calculations. We applied this perturbative expansion approach to a classical gas at rest, but the method is extendable to thermal gas with finite atomic motion and to quantum gases where non-trivial pair correlations can be naturally included.
We investigate collisional loss in an ultracold mixture of $^{40}$K$^{87}$Rb molecules and $^{87}$Rb atoms, where chemical reactions between the two species are energetically forbidden. Through direct detection of the KRb$_{2}^{*}$ intermediate compl exes formed from atom-molecule collisions, we show that a $1064$ nm laser source used for optical trapping of the sample can efficiently deplete the complex population via photo-excitation, an effect which can explain the universal two-body loss observed in the mixture. By monitoring the time-evolution of the KRb$_{2}^{*}$ population after a sudden reduction in the $1064$ nm laser intensity, we measure the lifetime of the complex ($0.39(6)$ ms), as well as the photo-excitation rate for $1064$ nm light ($0.50(3)$ $mu$s$^{-1}($kW/cm$^{2})^{-1}$). The observed lifetime is ${sim}10^{5}$ times longer than recent estimates based on the Rice-Ramsperger-Kassel-Marcus statistical theory, which calls for new insight to explain such a dramatic discrepancy.
Ramsey spectroscopy has become a powerful technique for probing non-equilibrium dynamics of internal (pseudospin) degrees of freedom of interacting systems. In many theoretical treatments, the key to understanding the dynamics has been to assume the external (motional) degrees of freedom are decoupled from the pseudospin degrees of freedom. Determining the validity of this approximation -- known as the spin model approximation -- is complicated, and has not been addressed in detail. Here we shed light in this direction by calculating Ramsey dynamics exactly for two interacting spin-1/2 particles in a harmonic trap. We focus on $s$-wave-interacting fermions in quasi-one and two-dimensional geometries. We find that in 1D the spin model assumption works well over a wide range of experimentally-relevant conditions, but can fail at time scales longer than those set by the mean interaction energy. Surprisingly, in 2D a modified version of the spin model is exact to first order in the interaction strength. This analysis is important for a correct interpretation of Ramsey spectroscopy and has broad applications ranging from precision measurements to quantum information and to fundamental probes of many-body systems.
236 - H. Bender , C. Stehle , S. Slama 2010
Scattering of light at a distribution of scatterers is an intrinsically cooperative process, which means that the scattering rate and the angular distribution of the scattered light are essentially governed by bulk properties of the distribution, suc h as its size, shape, and density, although local disorder and density fluctuations may have an important impact on the cooperativity. Via measurements of the radiation pressure exerted by a far-detuned laser beam on a very small and dense cloud of ultracold atoms, we are able to identify the respective roles of superradiant acceleration of the scattering rate and of Mie scattering in the cooperative process. They lead respectively to a suppression or an enhancement of the radiation pressure. We observe a maximum in the radiation pressure as a function of the induced phase shift, marking the borderline of the validity of the Rayleigh-Debye-Gans approximation from a regime, where Mie scattering is more complex. Our observations thus help to clarify the intricate relationship between Rayleigh scattering of light at a coarse-grained ensemble of individual scatterers and Mie scattering at the bulk density distribution.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا