ﻻ يوجد ملخص باللغة العربية
We show how to compute conformal blocks of operators in arbitrary Lorentz representations using the formalism described in arXiv:1905.00036 and arXiv:1905.00434, and present several explicit examples of blocks derived via this method. The procedure for obtaining the blocks has been reduced to (1) determining the relevant group theoretic structures and (2) applying appropriate predetermined substitution rules. The most transparent expressions for the blocks we find are expressed in terms of specific substitutions on the Gegenbauer polynomials. In our examples, we study operators which transform as scalars, symmetric tensors, two-index antisymmetric tensors, as well as mixed representations of the Lorentz group.
We show how to construct embedding space three-point functions for operators in arbitrary Lorentz representations by employing the formalism developed in arXiv:1905.00036 and arXiv:1905.00434. We study tensor structures that intertwine the operators
We compute the most general embedding space two-point function in arbitrary Lorentz representations in the context of the recently introduced formalism in arXiv:1905.00036 and arXiv:1905.00434. This work provides a first explicit application of this
We apply the analytic conformal bootstrap method to study weakly coupled conformal gauge theories in four dimensions. We employ twist conformal blocks to find the most general form of the one-loop four-point correlation function of identical scalar o
Deep-inelastic scattering, in the laboratory and on the lattice, is most instructive for understanding how the nucleon is built from quarks and gluons. The long-term goal is to compute the associated structure functions from first principles. So far
It is suggested in the paper by A.J. Chambers {it et al.} (Phys. Rev. Lett. 118, 242001 (2017), arXiv:1703.01153) that the time-ordered current-curent correlator in the nucleon calculated on the lattice is to be identified as the forward Compton ampl