ﻻ يوجد ملخص باللغة العربية
We compute the most general embedding space two-point function in arbitrary Lorentz representations in the context of the recently introduced formalism in arXiv:1905.00036 and arXiv:1905.00434. This work provides a first explicit application of this approach and furnishes a number of checks of the formalism. We project the general embedding space two-point function to position space and find a form consistent with conformal covariance. Several concrete examples are worked out in detail. We also derive constraints on the OPE coefficient matrices appearing in the two-point function, which allow us to impose unitarity conditions on the two-point function coefficients for operators in any Lorentz representations.
We show how to construct embedding space three-point functions for operators in arbitrary Lorentz representations by employing the formalism developed in arXiv:1905.00036 and arXiv:1905.00434. We study tensor structures that intertwine the operators
We show how to compute conformal blocks of operators in arbitrary Lorentz representations using the formalism described in arXiv:1905.00036 and arXiv:1905.00434, and present several explicit examples of blocks derived via this method. The procedure f
Deep-inelastic scattering, in the laboratory and on the lattice, is most instructive for understanding how the nucleon is built from quarks and gluons. The long-term goal is to compute the associated structure functions from first principles. So far
We consider correlation functions of operators and the operator product expansion in two-dimensional quantum gravity. First we introduce correlation functions with geodesic distances between operators kept fixed. Next by making two of the operators c
It is suggested in the paper by A.J. Chambers {it et al.} (Phys. Rev. Lett. 118, 242001 (2017), arXiv:1703.01153) that the time-ordered current-curent correlator in the nucleon calculated on the lattice is to be identified as the forward Compton ampl