ﻻ يوجد ملخص باللغة العربية
We address the challenging problem of generating facial attributes using a single image in an unconstrained pose. In contrast to prior works that largely consider generation on 2D near-frontal images, we propose a GAN-based framework to generate attributes directly on a dense 3D representation given by UV texture and position maps, resulting in photorealistic, geometrically-consistent and identity-preserving outputs. Starting from a self-occluded UV texture map obtained by applying an off-the-shelf 3D reconstruction method, we propose two novel components. First, a texture completion generative adversarial network (TC-GAN) completes the partial UV texture map. Second, a 3D attribute generation GAN (3DA-GAN) synthesizes the target attribute while obtaining an appearance consistent with 3D face geometry and preserving identity. Extensive experiments on CelebA, LFW and IJB-A show that our method achieves consistently better attribute generation accuracy than prior methods, a higher degree of qualitative photorealism and preserves face identity information.
We present a versatile model, FaceAnime, for various video generation tasks from still images. Video generation from a single face image is an interesting problem and usually tackled by utilizing Generative Adversarial Networks (GANs) to integrate in
While deep learning-based 3D face generation has made a progress recently, the problem of dynamic 3D (4D) facial expression synthesis is less investigated. In this paper, we propose a novel solution to the following question: given one input 3D neutr
Existing face super-resolution (SR) methods mainly assume the input image to be noise-free. Their performance degrades drastically when applied to real-world scenarios where the input image is always contaminated by noise. In this paper, we propose a
Monocular 3D human-pose estimation from static images is a challenging problem, due to the curse of dimensionality and the ill-posed nature of lifting 2D-to-3D. In this paper, we propose a Deep Conditional Variational Autoencoder based model that syn
Recently, due to the collection of large scale 3D face models, as well as the advent of deep learning, a significant progress has been made in the field of 3D face alignment in-the-wild. That is, many methods have been proposed that establish sparse