ﻻ يوجد ملخص باللغة العربية
Existing face super-resolution (SR) methods mainly assume the input image to be noise-free. Their performance degrades drastically when applied to real-world scenarios where the input image is always contaminated by noise. In this paper, we propose a Facial Attribute Capsules Network (FACN) to deal with the problem of high-scale super-resolution of noisy face image. Capsule is a group of neurons whose activity vector models different properties of the same entity. Inspired by the concept of capsule, we propose an integrated representation model of facial information, which named Facial Attribute Capsule (FAC). In the SR processing, we first generated a group of FACs from the input LR face, and then reconstructed the HR face from this group of FACs. Aiming to effectively improve the robustness of FAC to noise, we generate FAC in semantic, probabilistic and facial attributes manners by means of integrated learning strategy. Each FAC can be divided into two sub-capsules: Semantic Capsule (SC) and Probabilistic Capsule (PC). Them describe an explicit facial attribute in detail from two aspects of semantic representation and probability distribution. The group of FACs model an image as a combination of facial attribute information in the semantic space and probabilistic space by an attribute-disentangling way. The diverse FACs could better combine the face prior information to generate the face images with fine-grained semantic attributes. Extensive benchmark experiments show that our method achieves superior hallucination results and outperforms state-of-the-art for very low resolution (LR) noise face image super resolution.
Face Super-Resolution (SR) is a subfield of the SR domain that specifically targets the reconstruction of face images. The main challenge of face SR is to restore essential facial features without distortion. We propose a novel face SR method that ge
In this paper, we propose a talking face generation method that takes an audio signal as input and a short target video clip as reference, and synthesizes a photo-realistic video of the target face with natural lip motions, head poses, and eye blinks
General image super-resolution techniques have difficulties in recovering detailed face structures when applying to low resolution face images. Recent deep learning based methods tailored for face images have achieved improved performance by jointly
Facial attribute analysis in the real world scenario is very challenging mainly because of complex face variations. Existing works of analyzing face attributes are mostly based on the cropped and aligned face images. However, this result in the capab
Face super-resolution (SR) has become an indispensable function in security solutions such as video surveillance and identification system, but the distortion in facial components is a great challenge in it. Most state-of-the-art methods have utilize