ﻻ يوجد ملخص باللغة العربية
With the published data of apparent axis ratios for 1109 ultra-diffuse galaxies (UDGs) located in 17 low-redshift (z~ 0.020 - 0.063) galaxy clusters and 84 UDGs in 2 intermediate-redshift (z~ 0.308 - 0.348) clusters, we take advantage of a Markov Chain Monte Carlo approach and assume a ubiquitous triaxial model to investigate the intrinsic morphologies of UDGs. In contrast to the conclusion of Burkert (2017), i.e., the underlying shapes of UDGs are purely prolate ($C=B<A$), we find that the data favor the oblate-triaxial models ($C<Blesssim A$) over the nearly prolate ones. We also find that the intrinsic morphologies of UDGs are relevant to their stellar masses/luminosities, environments, and redshifts. First, for the low-redshift UDGs in the same environment, the more-luminous ones are always thicker than the less-luminous counterparts, possibly due to the more voilent internal supernovae feedback or external tidal interactions for the progenitors of the more-luminous UDGs. The UDG thickness dependence on luminosity is distinct from that of the typical quiescent dwarf ellipticals (dEs) and dwarf spheroidals (dSphs) in the local clusters and groups, but resembles that of massive galaxies; in this sense, UDGs may not be simply treated as an extension of the dE/dSph class with similar evolutionary histories. Second, for the low-redshift UDGs within the same luminosity range, the ones with smaller cluster-centric distances are more puffed-up, probably attributed to tidal interactions. Finally, the intermediate-redshift cluster UDGs are more flattened, which plausibly suggests a `disky origin for high-redshift, initial UDGs.
We investigate the formation of ultra-diffuse galaxies (UDGs) using the Auriga high-resolution cosmological magneto-hydrodynamical simulations of Milky Way-sized galaxies. We identify a sample of $92$ UDGs in the simulations that match a wide range o
Dark matter as a Bose-Einstein condensate, such as the axionic scalar field particles of String Theory, can explain the coldness of dark matter on large scales. Pioneering simulations in this context predict a rich wave-like structure, with a ground
We use the textsc{Romulus25} cosmological simulation volume to identify the largest-ever simulated sample of {it field} ultra-diffuse galaxies (UDGs). At $z=0$, we find that isolated UDGs have average star formation rates, colors, and virial masses f
We address the origin of Ultra-Diffuse Galaxies (UDGs), which have stellar masses typical of dwarf galaxies but effective radii of Milky Way-sized objects. Their formation mechanism, and whether they are failed $rm L_{star}$ galaxies or diffuse dwarf
We present an analysis of archival {it HST/ACS} imaging in the F475W ($g_{475}$), F606W ($V_{606}$) and F814W ($I_{814}$) bands of the globular cluster (GC) system of a large (3.4 kpc effective radius) ultra-diffuse galaxy (DF17) believed located in