ﻻ يوجد ملخص باللغة العربية
Quantitative analysis of cell nuclei in microscopic images is an essential yet challenging source of biological and pathological information. The major challenge is accurate detection and segmentation of densely packed nuclei in images acquired under a variety of conditions. Mask R-CNN-based methods have achieved state-of-the-art nucleus segmentation. However, the current pipeline requires fully annotated training images, which are time consuming to create and sometimes noisy. Importantly, nuclei often appear similar within the same image. This similarity could be utilized to segment nuclei with only partially labeled training examples. We propose a simple yet effective region-proposal module for the current Mask R-CNN pipeline to perform few-exemplar learning. To capture the similarities between unlabeled regions and labeled nuclei, we apply decomposed self-attention to learned features. On the self-attention map, we observe strong activation at the centers and edges of all nuclei, including unlabeled nuclei. On this basis, our region-proposal module propagates partial annotations to the whole image and proposes effective bounding boxes for the bounding box-regression and binary mask-generation modules. Our method effectively learns from unlabeled regions thereby improving detection performance. We test our method with various nuclear images. When trained with only 1/4 of the nuclei annotated, our approach retains a detection accuracy comparable to that from training with fully annotated data. Moreover, our method can serve as a bootstrapping step to create full annotations of datasets, iteratively generating and correcting annotations until a predetermined coverage and accuracy are reached. The source code is available at https://github.com/feng-lab/nuclei.
In many applications labeled data is not readily available, and needs to be collected via pain-staking human supervision. We propose a rule-exemplar method for collecting human supervision to combine the efficiency of rules with the quality of instan
Facial landmark detection aims to localize the anatomically defined points of human faces. In this paper, we study facial landmark detection from partially labeled facial images. A typical approach is to (1) train a detector on the labeled images; (2
We apply the network Lasso to classify partially labeled data points which are characterized by high-dimensional feature vectors. In order to learn an accurate classifier from limited amounts of labeled data, we borrow statistical strength, via an in
Motivation: Capillary electrophoresis (CE) of nucleic acids is a workhorse technology underlying high-throughput genome analysis and large-scale chemical mapping for nucleic acid structural inference. Despite the wide availability of CE-based instrum
Attribute reduction is one of the most important research topics in the theory of rough sets, and many rough sets-based attribute reduction methods have thus been presented. However, most of them are specifically designed for dealing with either labe