ﻻ يوجد ملخص باللغة العربية
In this paper, we investigate the model-driven deep learning (DL) for MIMO detection. In particular, the MIMO detector is specially designed by unfolding an iterative algorithm and adding some trainable parameters. Since the number of trainable parameters is much fewer than the data-driven DL based signal detector, the model-driven DL based MIMO detector can be rapidly trained with a much smaller data set. The proposed MIMO detector can be extended to soft-input soft-output detection easily. Furthermore, we investigate joint MIMO channel estimation and signal detection (JCESD), where the detector takes channel estimation error and channel statistics into consideration while channel estimation is refined by detected data and considers the detection error. Based on numerical results, the model-driven DL based MIMO detector significantly improves the performance of corresponding traditional iterative detector, outperforms other DL-based MIMO detectors and exhibits superior robustness to various mismatches.
In this paper, we propose a model-driven deep learning network for multiple-input multiple-output (MIMO) detection. The structure of the network is specially designed by unfolding the iterative algorithm. Some trainable parameters are optimized throu
Phase Modulation on the Hypersphere (PMH) is a power efficient modulation scheme for the textit{load-modulated} multiple-input multiple-output (MIMO) transmitters with central power amplifiers (CPA). However, it is difficult to obtain the precise cha
In this paper, an efficient massive multiple-input multiple-output (MIMO) detector is proposed by employing a deep neural network (DNN). Specifically, we first unfold an existing iterative detection algorithm into the DNN structure, such that the det
Massive multiuser multiple-input multiple-output (MU-MIMO) has been the mainstream technology in fifth-generation wireless systems. To reduce high hardware costs and power consumption in massive MU-MIMO, low-resolution digital-to-analog converters (D
Intelligent communication is gradually considered as the mainstream direction in future wireless communications. As a major branch of machine learning, deep learning (DL) has been applied in physical layer communications and has demonstrated an impre