ﻻ يوجد ملخص باللغة العربية
Intelligent communication is gradually considered as the mainstream direction in future wireless communications. As a major branch of machine learning, deep learning (DL) has been applied in physical layer communications and has demonstrated an impressive performance improvement in recent years. However, most of the existing works related to DL focus on data-driven approaches, which consider the communication system as a black box and train it by using a huge volume of data. Training a network requires sufficient computing resources and extensive time, both of which are rarely found in communication devices. By contrast, model-driven DL approaches combine communication domain knowledge with DL to reduce the demand for computing resources and training time. This article reviews the recent advancements in the application of model-driven DL approaches in physical layer communications, including transmission scheme, receiver design, and channel information recovery. Several open issues for further research are also highlighted after presenting the comprehensive survey.
In this chapter, we will give comprehensive examples of applying RL in optimizing the physical layer of wireless communications by defining different class of problems and the possible solutions to handle them. In Section 9.2, we present all the basi
In this paper, we investigate the model-driven deep learning (DL) for MIMO detection. In particular, the MIMO detector is specially designed by unfolding an iterative algorithm and adding some trainable parameters. Since the number of trainable param
Massive multiuser multiple-input multiple-output (MU-MIMO) has been the mainstream technology in fifth-generation wireless systems. To reduce high hardware costs and power consumption in massive MU-MIMO, low-resolution digital-to-analog converters (D
The realization of practical intelligent reflecting surface (IRS)-assisted multi-user communication (IRS-MUC) systems critically depends on the proper beamforming design exploiting accurate channel state information (CSI). However, channel estimation
We consider an ambient backscatter communication (AmBC) system aided by an intelligent reflecting surface (IRS). The optimization of the IRS to assist AmBC is extremely difficult when there is no prior channel knowledge, for which no design solutions