ترغب بنشر مسار تعليمي؟ اضغط هنا

Introduction to Neural Network based Approaches for Question Answering over Knowledge Graphs

79   0   0.0 ( 0 )
 نشر من قبل Nilesh Chakraborty
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Question answering has emerged as an intuitive way of querying structured data sources, and has attracted significant advancements over the years. In this article, we provide an overview over these recent advancements, focusing on neural network based question answering systems over knowledge graphs. We introduce readers to the challenges in the tasks, current paradigms of approaches, discuss notable advancements, and outline the emerging trends in the field. Through this article, we aim to provide newcomers to the field with a suitable entry point, and ease their process of making informed decisions while creating their own QA system.



قيم البحث

اقرأ أيضاً

Relation linking is essential to enable question answering over knowledge bases. Although there are various efforts to improve relation linking performance, the current state-of-the-art methods do not achieve optimal results, therefore, negatively im pacting the overall end-to-end question answering performance. In this work, we propose a novel approach for relation linking framing it as a generative problem facilitating the use of pre-trained sequence-to-sequence models. We extend such sequence-to-sequence models with the idea of infusing structured data from the target knowledge base, primarily to enable these models to handle the nuances of the knowledge base. Moreover, we train the model with the aim to generate a structured output consisting of a list of argument-relation pairs, enabling a knowledge validation step. We compared our method against the existing relation linking systems on four different datasets derived from DBpedia and Wikidata. Our method reports large improvements over the state-of-the-art while using a much simpler model that can be easily adapted to different knowledge bases.
Spoken conversational question answering (SCQA) requires machines to model complex dialogue flow given the speech utterances and text corpora. Different from traditional text question answering (QA) tasks, SCQA involves audio signal processing, passa ge comprehension, and contextual understanding. However, ASR systems introduce unexpected noisy signals to the transcriptions, which result in performance degradation on SCQA. To overcome the problem, we propose CADNet, a novel contextualized attention-based distillation approach, which applies both cross-attention and self-attention to obtain ASR-robust contextualized embedding representations of the passage and dialogue history for performance improvements. We also introduce the spoken conventional knowledge distillation framework to distill the ASR-robust knowledge from the estimated probabilities of the teacher model to the student. We conduct extensive experiments on the Spoken-CoQA dataset and demonstrate that our approach achieves remarkable performance in this task.
When answering a question, people often draw upon their rich world knowledge in addition to the particular context. Recent work has focused primarily on answering questions given some relevant document or context, and required very little general bac kground. To investigate question answering with prior knowledge, we present CommonsenseQA: a challenging new dataset for commonsense question answering. To capture common sense beyond associations, we extract from ConceptNet (Speer et al., 2017) multiple target concepts that have the same semantic relation to a single source concept. Crowd-workers are asked to author multiple-choice questions that mention the source concept and discriminate in turn between each of the target concepts. This encourages workers to create questions with complex semantics that often require prior knowledge. We create 12,247 questions through this procedure and demonstrate the difficulty of our task with a large number of strong baselines. Our best baseline is based on BERT-large (Devlin et al., 2018) and obtains 56% accuracy, well below human performance, which is 89%.
The last several years have seen intensive interest in exploring neural-network-based models for machine comprehension (MC) and question answering (QA). In this paper, we approach the problems by closely modelling questions in a neural network framew ork. We first introduce syntactic information to help encode questions. We then view and model different types of questions and the information shared among them as an adaptation task and proposed adaptation models for them. On the Stanford Question Answering Dataset (SQuAD), we show that these approaches can help attain better results over a competitive baseline.
When answering complex questions, people can seamlessly combine information from visual, textual and tabular sources. While interest in models that reason over multiple pieces of evidence has surged in recent years, there has been relatively little w ork on question answering models that reason across multiple modalities. In this paper, we present MultiModalQA(MMQA): a challenging question answering dataset that requires joint reasoning over text, tables and images. We create MMQA using a new framework for generating complex multi-modal questions at scale, harvesting tables from Wikipedia, and attaching images and text paragraphs using entities that appear in each table. We then define a formal language that allows us to take questions that can be answered from a single modality, and combine them to generate cross-modal questions. Last, crowdsourcing workers take these automatically-generated questions and rephrase them into more fluent language. We create 29,918 questions through this procedure, and empirically demonstrate the necessity of a multi-modal multi-hop approach to solve our task: our multi-hop model, ImplicitDecomp, achieves an average F1of 51.7 over cross-modal questions, substantially outperforming a strong baseline that achieves 38.2 F1, but still lags significantly behind human performance, which is at 90.1 F1

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا