ﻻ يوجد ملخص باللغة العربية
When answering complex questions, people can seamlessly combine information from visual, textual and tabular sources. While interest in models that reason over multiple pieces of evidence has surged in recent years, there has been relatively little work on question answering models that reason across multiple modalities. In this paper, we present MultiModalQA(MMQA): a challenging question answering dataset that requires joint reasoning over text, tables and images. We create MMQA using a new framework for generating complex multi-modal questions at scale, harvesting tables from Wikipedia, and attaching images and text paragraphs using entities that appear in each table. We then define a formal language that allows us to take questions that can be answered from a single modality, and combine them to generate cross-modal questions. Last, crowdsourcing workers take these automatically-generated questions and rephrase them into more fluent language. We create 29,918 questions through this procedure, and empirically demonstrate the necessity of a multi-modal multi-hop approach to solve our task: our multi-hop model, ImplicitDecomp, achieves an average F1of 51.7 over cross-modal questions, substantially outperforming a strong baseline that achieves 38.2 F1, but still lags significantly behind human performance, which is at 90.1 F1
In open question answering (QA), the answer to a question is produced by retrieving and then analyzing documents that might contain answers to the question. Most open QA systems have considered only retrieving information from unstructured text. Here
Recent advances in transformers have enabled Table Question Answering (Table QA) systems to achieve high accuracy and SOTA results on open domain datasets like WikiTableQuestions and WikiSQL. Such transformers are frequently pre-trained on open-domai
Recent advances in open-domain QA have led to strong models based on dense retrieval, but only focused on retrieving textual passages. In this work, we tackle open-domain QA over tables for the first time, and show that retrieval can be improved by a
Numerical reasoning skills are essential for complex question answering (CQA) over text. It requires opertaions including counting, comparison, addition and subtraction. A successful approach to CQA on text, Neural Module Networks (NMNs), follows the
We introduce DELFT, a factoid question answering system which combines the nuance and depth of knowledge graph question answering approaches with the broader coverage of free-text. DELFT builds a free-text knowledge graph from Wikipedia, with entitie