ﻻ يوجد ملخص باللغة العربية
We present a universal interpretation for a class of conformal extended standard models including Higgs portal interactions realized in low-energy effective theories. The scale generation mechanism in this class (scalegenesis) arises along the (nearly) conformal/flat direction for the scale symmetry breaking, where the electroweak-symmetry breaking structure is achieved in a similar way to the standard models. A dynamical origin for the Higgs portal coupling can provide the discriminator for the low-energy ``universality class, to be probed in forthcoming collider experiments.
The gravitational wave (GW) background produced at the cosmological chiral phase transition in a conformal extension of the standard model is studied. To obtain the bounce solution of coupled field equations we implement an iterative method. We find
We review the gauge hierarchy problem in the standard model. We discuss the meaning of the quadratic divergence in terms of the Wilsonian renormalization group. Classical scale symmetry, which prohibits dimensionful parameters in the bare action, cou
The tremendous phenomenological success of the Standard Model (SM) suggests that its flavor structure and gauge interactions may not be arbitrary but should have a fundamental first-principle explanation. In this work, we explore how the basic distin
We investigate the general group structure of gauge-Higgs unified models. We find that a given embedding of the sm gauge group will imply the presence of additional light vectors, except for a small set of special cases, which we determine; the argum
We revisit a recently proposed scale invariant extension of the standard model, in which the scalar bi-linear condensate in a strongly interacting hidden sector dynamically breaks scale symmetry, thereby triggering electroweak symmetry breaking. Rela