ترغب بنشر مسار تعليمي؟ اضغط هنا

Gauge hierarchy problem and scalegenesis

76   0   0.0 ( 0 )
 نشر من قبل Masatoshi Yamada
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English
 تأليف Masatoshi Yamada




اسأل ChatGPT حول البحث

We review the gauge hierarchy problem in the standard model. We discuss the meaning of the quadratic divergence in terms of the Wilsonian renormalization group. Classical scale symmetry, which prohibits dimensionful parameters in the bare action, could play a key role for the understanding of the origin of the electroweak scale. We discuss the scale-generation mechanism, i.e. scalegenesis in scale invariant theories. In this paper, we introduce a scale invariant extension of the SM based on a strongly interacting scalar-gauge theory. It is discussed that asymptotically safe quantum gravity provides a hint about solutions to the gauge hierarchy problem.



قيم البحث

اقرأ أيضاً

113 - Jihn E. Kim 2019
The chirality is the key for our world. In this scheme, I present a solution of the long standing gauge hierarchy problem with a hidden sector SU(5)$$ with representations $overline{bf 10}oplus overline{bf 5}oplus 2cdot{bf 5}$. Sideway remarks are on {it NATURAL HILLTOP} inflation and a bound on the QCD angle $bartheta$.
49 - Jihn E. Kim 2020
We revisit the gauge hierarchy problem with the emphasis on the chiral property of the Standard Model. We present a model realizing a gauge hierarchy. Along this line, we also comment briefly on the very light axions and the upper bound on $theta_{rm QCD}$.
Recently Graham, Kaplan and Rajendran [1] proposed cosmological relaxation as a mechanism for generating a hierarchically small Higgs vacuum expectation value. Inspired by this we collect some thoughts on steps towards a solution to the electroweak h ierarchy problem and apply them to the original model of cosmological relaxation [1]. To do so, we study the dynamics of the model and determine the relation between the fundamental input parameters and the electroweak vacuum expectation value. Depending on the input parameters the model exhibits three qualitatively different regimes, two of which allow for hierarchically small Higgs vacuum expectation values. One leads to standard electroweak symmetry breaking whereas in the other regime electroweak symmetry is mainly broken by a Higgs source term. While the latter is not acceptable in a model based on the QCD axion, in non-QCD models this may lead to new and interesting signatures in Higgs observables.
303 - David W. Maybury 2004
We demonstrate the potential of forthcoming mu -> e gamma and mu-e conversion experiments to implicate or disfavor solutions to the gauge hierarchy problem before the advent of the CERN Large Hadron Collider. Solutions of dynamical electroweak symmet ry breaking, little Higgs, supersymmetry, and extra dimensions are considered. Correlations of mu -> e gamma and mu-e conversion branching ratios are analyzed for discriminating patterns. Measurements of these exotic muon decays may have compelling implications for supersymmetric solutions.
Supersymmetric (SUSY) models, even those described by relatively few parameters, generically allow many possible SUSY particle (sparticle) mass hierarchies. As the sparticle mass hierarchy determines, to a great extent, the collider phenomenology of a model, the enumeration of these hierarchies is of the utmost importance. We therefore provide a readily generalizable procedure for determining the number of sparticle mass hierarchies in a given SUSY model. As an application, we analyze the gravity-mediated SUSY breaking scenario with various combinations of GUT-scale boundary conditions involving different levels of universality among the gaugino and scalar masses. For each of the eight considered models, we provide the complete list of forbidden hierarchies in a compact form. Our main result is that the complete (typically rather large) set of forbidden hierarchies among the eight sparticles considered in this analysis can be fully specified by just a few forbidden relations involving much smaller subsets of sparticles.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا