ترغب بنشر مسار تعليمي؟ اضغط هنا

Leveraging online learning for CSS in frugal IoT network

271   0   0.0 ( 0 )
 نشر من قبل Nancy Nayak
 تاريخ النشر 2019
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a novel method for centralized collaborative spectrum sensing for IoT network leveraging cognitive radio network. Based on an online learning framework, we propose an algorithm to efficiently combine the individual sensing results based on the past performance of each detector. Additionally, we show how to utilize the learned normalized weights as a proxy metric of detection accuracy and selectively enable the sensing at detectors. Our results show improved performance in terms of inter-user collision and misdetection. Further, by selectively enabling some of the devices in the network, we propose a strategy to extend the field life of devices without compromising on detection accuracy.



قيم البحث

اقرأ أيضاً

310 - Yuwei Huang , Xiaopeng Mo , Jie Xu 2019
This paper considers an unmanned aerial vehicle enabled-up link non-orthogonal multiple-access system, where multiple mobile users on the ground send independent messages to a unmanned aerial vehicle in the sky via non-orthogonal multiple-access tran smission. Our objective is to design the unmanned aerial vehicle dynamic maneuver for maximizing the sum-rate throughput of all mobile ground users over a finite time horizon.
95 - Jie Yang , Shi Jin , Chao-Kai Wen 2021
This study considers the joint location and velocity estimation of UE and scatterers in a three-dimensional mmWave CRAN architecture. Several existing works have achieved satisfactory results with neural networks (NNs) for localization. However, the black box NN localization method has limited performance and relies on a prohibitive amount of training data. Thus, we propose a model-based learning network for localization by combining NNs with geometric models. Specifically, we first develop an unbiased WLS estimator by utilizing hybrid delay/angular measurements, which determine the location and velocity of the UE in only one estimator, and can obtain the location and velocity of scatterers further. The proposed estimator can achieve the CRLB and outperforms state-of-the-art methods. Second, we establish a NN-assisted localization method (NN-WLS) by replacing the linear approximations in the proposed WLS localization model with NNs to learn higher-order error components, thereby enhancing the performance of the estimator. The solution possesses the powerful learning ability of the NN and the robustness of the proposed geometric model. Moreover, the ensemble learning is applied to improve the localization accuracy further. Comprehensive simulations show that the proposed NN-WLS is superior to the benchmark methods in terms of localization accuracy, robustness, and required time resources.
77 - Sicong Liu , Liang Xiao , Zhu Han 2020
Narrowband internet-of-things (NB-IoT) is a competitive 5G technology for massive machine-type communication scenarios, but meanwhile introduces narrowband interference (NBI) to existing broadband transmission such as the long term evolution (LTE) sy stems in enhanced mobile broadband (eMBB) scenarios. In order to facilitate the harmonic and fair coexistence in wireless heterogeneous networks, it is important to eliminate NB-IoT interference to LTE systems. In this paper, a novel sparse machine learning based framework and a sparse combinatorial optimization problem is formulated for accurate NBI recovery, which can be efficiently solved using the proposed iterative sparse learning algorithm called sparse cross-entropy minimization (SCEM). To further improve the recovery accuracy and convergence rate, regularization is introduced to the loss function in the enhanced algorithm called regularized SCEM. Moreover, exploiting the spatial correlation of NBI, the framework is extended to multiple-input multiple-output systems. Simulation results demonstrate that the proposed methods are effective in eliminating NB-IoT interference to LTE systems, and significantly outperform the state-of-the-art methods.
This paper presents a novel framework for traffic prediction of IoT devices activated by binary Markovian events. First, we consider a massive set of IoT devices whose activation events are modeled by an On-Off Markov process with known transition pr obabilities. Next, we exploit the temporal correlation of the traffic events and apply the forward algorithm in the context of hidden Markov models (HMM) in order to predict the activation likelihood of each IoT device. Finally, we apply the fast uplink grant scheme in order to allocate resources to the IoT devices that have the maximal likelihood for transmission. In order to evaluate the performance of the proposed scheme, we define the regret metric as the number of missed resource allocation opportunities. The proposed fast uplink scheme based on traffic prediction outperforms both conventional random access and time division duplex in terms of regret and efficiency of system usage, while it maintains its superiority over random access in terms of average age of information for massive deployments.
The 6G vision is envisaged to enable agile network expansion and rapid deployment of new on-demand microservices (i.e., visibility services for data traffic management, mobile edge computing services) closer to the networks edge IoT devices. However, providing one of the critical features of network visibility services, i.e., data flow prediction in the network, is challenging at the edge devices within a dynamic cloud-native environment as the traffic flow characteristics are random and sporadic. To provide the AI-native services for the 6G vision, we propose a novel edge-native framework to provide an intelligent prognosis technique for data traffic management in this paper. The prognosis model uses long short-term memory (LSTM)-based encoder-decoder deep learning, which we train on real time-series multivariate data records collected from the edge $mu$-boxes of a selected testbed network. Our result accurately predicts the statistical characteristics of data traffic and verify against the ground truth observations. Moreover, we validate our novel framework model with two performance metrics for each feature of the multivariate data.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا