ﻻ يوجد ملخص باللغة العربية
This study considers the joint location and velocity estimation of UE and scatterers in a three-dimensional mmWave CRAN architecture. Several existing works have achieved satisfactory results with neural networks (NNs) for localization. However, the black box NN localization method has limited performance and relies on a prohibitive amount of training data. Thus, we propose a model-based learning network for localization by combining NNs with geometric models. Specifically, we first develop an unbiased WLS estimator by utilizing hybrid delay/angular measurements, which determine the location and velocity of the UE in only one estimator, and can obtain the location and velocity of scatterers further. The proposed estimator can achieve the CRLB and outperforms state-of-the-art methods. Second, we establish a NN-assisted localization method (NN-WLS) by replacing the linear approximations in the proposed WLS localization model with NNs to learn higher-order error components, thereby enhancing the performance of the estimator. The solution possesses the powerful learning ability of the NN and the robustness of the proposed geometric model. Moreover, the ensemble learning is applied to improve the localization accuracy further. Comprehensive simulations show that the proposed NN-WLS is superior to the benchmark methods in terms of localization accuracy, robustness, and required time resources.
Beamforming structures with fixed beam codebooks provide economical solutions for millimeter wave (mmWave) communications due to the low hardware cost. However, the training overhead to search for the optimal beamforming configuration is proportional
In millimeter-wave (mmWave) channels, to overcome the high path loss, beamforming is required. Hence, the spatial representation of the channel is essential. Further, for accurate beam alignment and minimizing the outages, inter-beam interferences, e
While molecular communication via diffusion experiences significant inter-symbol interference (ISI), recent work suggests that ISI can be mitigated via time differentiation pre-processing which achieves pulse narrowing. Herein, the approach is genera
In this paper, we propose a physical layer security scheme that exploits a novel index modulation (IM) technique for coordinate interleaved orthogonal designs (CIOD). Utilizing the diversity gain of CIOD transmission, the proposed scheme, named CIOD-
In this work, we propose a novel approach for high accuracy user localization by merging tools from both millimeter wave (mmWave) imaging and communications. The key idea of the proposed solution is to leverage mmWave imaging to construct a high-reso