ﻻ يوجد ملخص باللغة العربية
We have studied the interplay of an Anderson impurity in Landau quantized graphene, with special emphasis on the influence of the chemical potential. Within the slave-boson mean-field theory, we found reentrant Kondo behaviour by varying the chemical potential or gate voltage. Between Landau levels, the density of states is suppressed, and by changing the graphenes Fermi energy, we cross from metallic to semiconducting regions. Hence, the corresponding Kondo behaviour is also influenced. The f-level spectral function reveals both the presence of Landau levels in the conduction band and the Kondo resonance.
We investigate the many-body effects of a magnetic adatom in ferromagnetic graphene by using the numerical renormalization group method. The nontrivial band dispersion of ferromagnetic graphene gives rise to interesting Kondo physics different from t
We consider the Kondo effect arising from a hydrogen impurity in graphene. As a first approximation, the strong covalent bond to a carbon atom removes that carbon atom without breaking the $C_{3}$ rotation symmetry, and we only retain the Hubbard int
The quantum Hall effect in curved space has been the subject of many theoretical investigations in the past, but devising a physical system to observe this effect is hard. Many works have indicated that electronic excitations in strained graphene rea
We report the observation of a quantum anomalous Hall effect in twisted bilayer graphene showing Hall resistance quantized to within .1% of the von Klitzing constant $h/e^2$ at zero magnetic field.The effect is driven by intrinsic strong correlations
We investigate the relation between the canonical model of quantum optics, the Jaynes-Cummings Hamiltonian and Dirac fermions in quantizing magnetic field. We demonstrate that Rabi oscillations are observable in the optical response of graphene, prov