ترغب بنشر مسار تعليمي؟ اضغط هنا

ADDMC: Weighted Model Counting with Algebraic Decision Diagrams

96   0   0.0 ( 0 )
 نشر من قبل Vu Hoang Nguyen Phan
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We present an algorithm to compute exact literal-weighted model counts of Boolean formulas in Conjunctive Normal Form. Our algorithm employs dynamic programming and uses Algebraic Decision Diagrams as the primary data structure. We implement this technique in ADDMC, a new model counter. We empirically evaluate various heuristics that can be used with ADDMC. We then compare ADDMC to state-of-the-art exact weighted model counters (Cachet, c2d, d4, and miniC2D) on 1914 standard model counting benchmarks and show that ADDMC significantly improves the virtual best solver.



قيم البحث

اقرأ أيضاً

We propose a unifying dynamic-programming framework to compute exact literal-weighted model counts of formulas in conjunctive normal form. At the center of our framework are project-join trees, which specify efficient project-join orders to apply add itive projections (variable eliminations) and joins (clause multiplications). In this framework, model counting is performed in two phases. First, the planning phase constructs a project-join tree from a formula. Second, the execution phase computes the model count of the formula, employing dynamic programming as guided by the project-join tree. We empirically evaluate various methods for the planning phase and compare constraint-satisfaction heuristics with tree-decomposition tools. We also investigate the performance of different data structures for the execution phase and compare algebraic decision diagrams with tensors. We show that our dynamic-programming model-counting framework DPMC is competitive with the state-of-the-art exact weighted model counters cachet, c2d, d4, and miniC2D.
The idea of counting the number of satisfying truth assignments (models) of a formula by adding random parity constraints can be traced back to the seminal work of Valiant and Vazirani, showing that NP is as easy as detecting unique solutions. While theoretically sound, the random parity constraints in that construction have the following drawback: each constraint, on average, involves half of all variables. As a result, the branching factor associated with searching for models that also satisfy the parity constraints quickly gets out of hand. In this work we prove that one can work with much shorter parity constraints and still get rigorous mathematical guarantees, especially when the number of models is large so that many constraints need to be added. Our work is based on the realization that the essential feature for random systems of parity constraints to be useful in probabilistic model counting is that the geometry of their set of solutions resembles an error-correcting code.
132 - Paul Tarau 2009
A pairing function J associates a unique natural number z to any two natural numbers x,y such that for two unpairing functions K and L, the equalities K(J(x,y))=x, L(J(x,y))=y and J(K(z),L(z))=z hold. Using pairing functions on natural number represe ntations of truth tables, we derive an encoding for Binary Decision Diagrams with the unique property that its boolean evaluation faithfully mimics its structural conversion to a a natural number through recursive application of a matching pairing function. We then use this result to derive {em ranking} and {em unranking} functions for BDDs and reduced BDDs. The paper is organized as a self-contained literate Prolog program, available at http://logic.csci.unt.edu/tarau/research/2008/pBDD.zip Keywords: logic programming and computational mathematics, pairing/unpairing functions, encodings of boolean functions, binary decision diagrams, natural number representations of truth tables
175 - Gerard t Hooft 1998
Explicit expressions are considered for the generating functions concerning the number of planar diagrams with given numbers of 3- and 4-point vertices. It is observed that planar renormalization theory requires diagrams with restrictions, in the sen se that one wishes to omit `tadpole inserions and `seagull insertions; at a later stage also self-energy insertions are to be removed, and finally also the dressed 3-point inserions and the dressed 4-point insertions. Diagrams with such restrictions can all be counted exactly. This results in various critical lines in the $lambda$-$g$ plane, where $lambda$ and $g$ are effective zero-dimensional coupling constants. These lines can be localized exactly.
Ontology-mediated query answering (OMQA) is a promising approach to data access and integration that has been actively studied in the knowledge representation and database communities for more than a decade. The vast majority of work on OMQA focuses on conjunctive queries, whereas more expressive queries that feature counting or other forms of aggregation remain largely unex-plored. In this paper, we introduce a general form of counting query, relate it to previous proposals, and study the complexity of answering such queries in the presence of DL-Lite ontologies. As it follows from existing work that query answering is intractable and often of high complexity, we consider some practically relevant restrictions, for which we establish improved complexity bounds.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا