ﻻ يوجد ملخص باللغة العربية
Structural imperfections such as grain boundaries (GBs) and dislocations are ubiquitous in solids and have been of central importance in understanding nature of polycrystals. In addition to their classical roles, advent of topological insulators (TIs) offers a chance to realize distinct topological states bound to them. Although dislocation inside three-dimensional TIs is one of the prime candidates to look for, its direct detection and characterization are challenging. Instead, in two-dimensional (2D) TIs, their creations and measurements are easier and, moreover, topological states at the GBs or dislocations intimately connect to their lattice symmetry. However, such roles of crystalline symmetries of GBs in 2D TIs have not been clearly measured yet. Here, we present the first direct evidence of a symmetry enforced Dirac type metallic state along a GB in 1T-MoTe$_2$, a prototypical 2D TI. Using scanning tunneling microscope, we show a metallic state along a grain boundary with non-symmorphic lattice symmetry and its absence along the other boundary with symmorphic one. Our large scale atomistic simulations demonstrate hourglass like nodal-line semimetallic in-gap states for the former while the gap-opening for the latter, explaining our observation very well. The protected metallic state tightly linked to its crystal symmetry demonstrated here can be used to create stable metallic nanowire inside an insulator.
The two-dimensional topological insulator phase has been observed previously in single HgTe-based quantum wells with inverted subband ordering. In double quantum wells (DQWs), coupling between the layers introduces additional degrees of freedom leadi
We examine the properties of edge states in a two-dimensional topological insulator. Based on the Kane-Mele model, we derive two coupled equations for the energy and the effective width of edge states at a given momentum in a semi-infinite honeycomb
We predict a mechanism to generate a pure spin current in a two-dimensional topological insulator. As the magnetic impurities exist on one of edges of the two-dimensional topological insulator, a gap is opened in the corresponding gapless edge states
We study nonlocal resistance in an H-shaped two-dimensional HgTe/CdTe quantum well consist of injector and detector, both of which can be tuned in the quantum spin Hall or metallic spin Hall regime. Because of strong spin-orbit interaction, there alw
Topological superconductivity is an exotic state of matter that supports Majorana zero-modes, which are surface modes in 3D, edge modes in 2D or localized end states in 1D. In the case of complete localization these Majorana modes obey non-Abelian ex