ﻻ يوجد ملخص باللغة العربية
A device based on a three-block Fresnel zone plate interferometer is proposed for hard X-ray phase-contrast imaging. The device combines a low requirement for the coherence of the initial radiation (the interferometer operates in the amplitude division mode) with an optical magnification of the image. A numerical simulation of the image formation is carried out, taking into account the limited source-interferometer distance, the size and spectral width of the X-ray source. The calculations show that the proposed set-up can be used as a phase-contrast microscope using laboratory hard X-ray sources.
Strict requirements were imposed on the sizes of testing sample in the previously suggested scheme of hard X-ray Fourier-transform holography based on a two-block Fresnel zone plate interferometer with common optical axis. The failure of these requir
We introduce a wide field hyperspectral microscope using the Fourier-transform approach. The interferometer is based on the Translating-Wedge-Based Identical Pulses eNcoding System (TWINS) [Opt. Lett. 37, 3027 (2012)], a common-path birefringent inte
We reported the usage of grating-based X-ray phase-contrast imaging in nondestructive testing of grating imperfections. It was found that electroplating flaws could be easily detected by conventional absorption signal, and in particular, we observed
In this theoretical study we analyze contrast transfer of weak-phase objects in a transmission electron microscope, which is equipped with an aberration corrector (Cs-corrector) in the imaging lens system and a physical phase plate in the back focal
X-ray Talbot-Lau interferometer has been used widely to conduct phase contrast imaging with a conventional low-brilliance x-ray source. Typically, in this technique, background correction has to be performed in order to obtain the pure signal of the