ترغب بنشر مسار تعليمي؟ اضغط هنا

Hard X-Ray Phase-Contrast Laboratory Microscope Based on Three-Block Fresnel Zone Plate Interferometer

52   0   0.0 ( 0 )
 نشر من قبل Levon Haroutunyan
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English
 تأليف L. A. Haroutunyan




اسأل ChatGPT حول البحث

A device based on a three-block Fresnel zone plate interferometer is proposed for hard X-ray phase-contrast imaging. The device combines a low requirement for the coherence of the initial radiation (the interferometer operates in the amplitude division mode) with an optical magnification of the image. A numerical simulation of the image formation is carried out, taking into account the limited source-interferometer distance, the size and spectral width of the X-ray source. The calculations show that the proposed set-up can be used as a phase-contrast microscope using laboratory hard X-ray sources.



قيم البحث

اقرأ أيضاً

Strict requirements were imposed on the sizes of testing sample in the previously suggested scheme of hard X-ray Fourier-transform holography based on a two-block Fresnel zone plate interferometer with common optical axis. The failure of these requir ements leads to appearance of noise in the reconstructed image. In this work, the mechanism of noise formation, as well as possibility of its suppression are considered.
75 - A. Candeo 2019
We introduce a wide field hyperspectral microscope using the Fourier-transform approach. The interferometer is based on the Translating-Wedge-Based Identical Pulses eNcoding System (TWINS) [Opt. Lett. 37, 3027 (2012)], a common-path birefringent inte rferometer which combines compactness, intrinsic interferometric delay precision, long-term stability and insensitivity to vibrations. We describe three different implementations of our system: two prototypes designed to test different optical schemes and an add-on for a commercial microscope. We show high-quality spectral microscopy of the fluorescence from stained cells and powders of inorganic pigments, demonstrating that the device is suited to biology and materials science. We demonstrate the acquisition of a 1Mpixel hyperspectral image in 75 seconds in the spectral range from 400 to 1100 nm. We also introduce an acquisition method which synthesizes a tunable spectral filter, providing band-passed images by the measurement of only two maps.
100 - Shenghao Wang , Can Zhang 2017
We reported the usage of grating-based X-ray phase-contrast imaging in nondestructive testing of grating imperfections. It was found that electroplating flaws could be easily detected by conventional absorption signal, and in particular, we observed that the grating defects resulting from uneven ultraviolet exposure could be clearly discriminated with phase-contrast signal. The experimental results demonstrate that grating-based X-ray phase-contrast imaging, with a conventional low-brilliance X-ray source, a large field of view and a reasonable compact setup, which simultaneously yields phase- and attenuation-contrast signal of the sample, can be ready-to-use in fast nondestructive testing of various imperfections in gratings and other similar photoetching products.
In this theoretical study we analyze contrast transfer of weak-phase objects in a transmission electron microscope, which is equipped with an aberration corrector (Cs-corrector) in the imaging lens system and a physical phase plate in the back focal plane of the objective lens. For a phase shift of pi/2 between scattered and unscattered electrons induced by a physical phase plate, the sine-type phase contrast transfer function is converted into a cosine-type function. Optimal imaging conditions could theoretically be achieved if the phase shifts caused by the objective lens defocus and lens aberrations would be equal zero. In reality this situation is difficult to realize because of residual aberrations and varying, non-zero local defocus values, which in general result from an uneven sample surface topography. We explore the conditions - i.e. range of Cs-values and defocus - for most favourable contrast transfer as a function of the information limit, which is only limited by the effect of partial coherence of the electron wave in Cs-corrected transmission electron microscopes. Under high-resolution operation conditions we find that a physical phase plate improves strongly low- and medium-resolution object contrast, while improving tolerance to defocus and Cs-variations, compared to a microscope without a phase plate.
X-ray Talbot-Lau interferometer has been used widely to conduct phase contrast imaging with a conventional low-brilliance x-ray source. Typically, in this technique, background correction has to be performed in order to obtain the pure signal of the sample under inspection. In this study, we reported on a research on the background correction strategies within this technique, especially we introduced a new phase unwrapping solution for one conventional background correction method, the key point of this new solution is changing the initial phase of each pixel by a cyclic shift operation on the raw images collected in phase stepping scan. Experimental result and numerical analysis showed that the new phase unwrapping algorithm could successfully subtract contribution of the systems background without error. Moreover, a potential advantage of this phase unwrapping strategy is that its effective phase measuring range could be tuned flexibly in some degree for example to be (-pi+3, pi+3], thus it would find usage in certain case because measuring range of the currently widely used background correction method is fixed to be (-pi, pi].
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا