ﻻ يوجد ملخص باللغة العربية
In the field of algebraic systems biology, the number of minimal polynomial models constructed using discretized data from an underlying system is related to the number of distinct reduced Grobner bases for the ideal of the data points. While the theory of Grobner bases is extensive, what is missing is a closed form for their number for a given ideal. This work contributes connections between the geometry of data points and the number of Grobner bases associated to small data sets. Furthermore we improve an existing upper bound for the number of Grobner bases specialized for data over a finite field.
Model selection based on experimental data is an important challenge in biological data science. Particularly when collecting data is expensive or time consuming, as it is often the case with clinical trial and biomolecular experiments, the problem o
In this paper, we make a contribution to the computation of Grobner bases. For polynomial reduction, instead of choosing the leading monomial of a polynomial as the monomial with respect to which the reduction process is carried out, we investigate w
In this work we provide a definition of a coloured operad as a monoid in some monoidal category, and develop the machinery of Grobner bases for coloured operads. Among the examples for which we show the existance of a quadratic Grobner basis we con
Grassmann manifolds $G_{k,n}$ are among the central objects in geometry and topology. The Borel picture of the mod 2 cohomology of $G_{k,n}$ is given as a polynomial algebra modulo a certain ideal $I_{k,n}$. The purpose of this paper is to understand
We give a notion of combinatorial proximity among strongly stable ideals in a given polynomial ring with a fixed Hilbert polynomial. We show that this notion guarantees geometric proximity of the corresponding points in the Hilbert scheme. We define