ﻻ يوجد ملخص باللغة العربية
Private Information Retrieval (PIR) problem has recently attracted a significant interest in the information-theory community. In this problem, a user wants to privately download one or more messages belonging to a database with copies stored on a single or multiple remote servers. In the single server scenario, the user must have prior side information, i.e., a subset of messages unknown to the server, to be able to privately retrieve the required messages in an efficient way. In the last decade, there has also been a significant interest in Locally Recoverable Codes (LRC), a class of storage codes in which each symbol can be recovered from a limited number of other symbols. More recently, there is an interest in cooperative locally recoverable codes, i.e., codes in which multiple symbols can be recovered from a small set of other code symbols. In this paper, we establish a relationship between coding schemes for the single-server PIR problem and LRCs. In particular, we show the following results: (i) PIR schemes designed for retrieving a single message are equivalent to classical LRCs; and (ii) PIR schemes for retrieving multiple messages are equivalent to cooperative LRCs. These equivalence results allow us to recover upper bounds on the download rate for PIR-SI schemes, and to obtain a novel rate upper bound on cooperative LRCs. We show results for both linear and non-linear codes.
In (single-server) Private Information Retrieval (PIR), a server holds a large database $DB$ of size $n$, and a client holds an index $i in [n]$ and wishes to retrieve $DB[i]$ without revealing $i$ to the server. It is well known that information the
Recently, it was discovered by several authors that a $q$-ary optimal locally recoverable code, i.e., a locally recoverable code archiving the Singleton-type bound, can have length much bigger than $q+1$. This is quite different from the classical $q
Locally recoverable (LRC) codes have recently been a focus point of research in coding theory due to their theoretical appeal and applications in distributed storage systems. In an LRC code, any erased symbol of a codeword can be recovered by accessi
Motivated by applications in distributed storage, the notion of a locally recoverable code (LRC) was introduced a few years back. In an LRC, any coordinate of a codeword is recoverable by accessing only a small number of other coordinates. While diff
A locally recoverable code is an error-correcting code such that any erasure in a coordinate of a codeword can be recovered from a set of other few coordinates. In this article we introduce a model of local recoverable codes that also includes local