ترغب بنشر مسار تعليمي؟ اضغط هنا

Capacity of Locally Recoverable Codes

329   0   0.0 ( 0 )
 نشر من قبل Arya Mazumdar
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English
 تأليف Arya Mazumdar




اسأل ChatGPT حول البحث

Motivated by applications in distributed storage, the notion of a locally recoverable code (LRC) was introduced a few years back. In an LRC, any coordinate of a codeword is recoverable by accessing only a small number of other coordinates. While different properties of LRCs have been well-studied, their performance on channels with random erasures or errors has been mostly unexplored. In this note, we analyze the performance of LRCs over such stochastic channels. In particular, for input-symmetric discrete memoryless channels, we give a tight characterization of the gap to Shannon capacity when LRCs are used over the channel.



قيم البحث

اقرأ أيضاً

Locally recoverable (LRC) codes have recently been a focus point of research in coding theory due to their theoretical appeal and applications in distributed storage systems. In an LRC code, any erased symbol of a codeword can be recovered by accessi ng only a small number of other symbols. For LRC codes over a small alphabet (such as binary), the optimal rate-distance trade-off is unknown. We present several new combinatorial bounds on LRC codes including the locality-aware sphere packing and Plotkin bounds. We also develop an approach to linear programming (LP) bounds on LRC codes. The resulting LP bound gives better estimates in examples than the other upper bounds known in the literature. Further, we provide the tightest known upper bound on the rate of linear LRC codes with a given relative distance, an improvement over the previous best known bounds.
A locally recoverable (LRC) code is a code over a finite field $mathbb{F}_q$ such that any erased coordinate of a codeword can be recovered from a small number of other coordinates in that codeword. We construct LRC codes correcting more than one era sure, which are subfield-subcodes of some $J$-affine variety codes. For these LRC codes, we compute localities $(r, delta)$ that determine the minimum size of a set $bar{R}$ of positions so that any $delta- 1$ erasures in $bar{R}$ can be recovered from the remaining $r$ coordinates in this set. We also show that some of these LRC codes with lengths $ngg q$ are $(delta-1)$-optimal.
We give a method to construct Locally Recoverable Error-Correcting codes. This method is based on the use of rational maps between affine spaces. The recovery of erasures is carried out by Lagrangian interpolation in general and simply by one addition in some good cases.
100 - Carlos Munuera 2018
A locally recoverable code is an error-correcting code such that any erasure in a coordinate of a codeword can be recovered from a set of other few coordinates. In this article we introduce a model of local recoverable codes that also includes local error detection. The cases of the Reed-Solomon and Locally Recoverable Reed-Solomon codes are treated in some detail.
A locally recoverable code is an error-correcting code such that any erasure in a single coordinate of a codeword can be recovered from a small subset of other coordinates. In this article we develop an algorithm that computes a recovery structure as concise posible for an arbitrary linear code $mathcal{C}$ and a recovery method that realizes it. This algorithm also provides the locality and the dual distance of $mathcal{C}$. Complexity issues are studied as well. Several examples are included.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا