ﻻ يوجد ملخص باللغة العربية
Motivated by applications in distributed storage, the notion of a locally recoverable code (LRC) was introduced a few years back. In an LRC, any coordinate of a codeword is recoverable by accessing only a small number of other coordinates. While different properties of LRCs have been well-studied, their performance on channels with random erasures or errors has been mostly unexplored. In this note, we analyze the performance of LRCs over such stochastic channels. In particular, for input-symmetric discrete memoryless channels, we give a tight characterization of the gap to Shannon capacity when LRCs are used over the channel.
Locally recoverable (LRC) codes have recently been a focus point of research in coding theory due to their theoretical appeal and applications in distributed storage systems. In an LRC code, any erased symbol of a codeword can be recovered by accessi
A locally recoverable (LRC) code is a code over a finite field $mathbb{F}_q$ such that any erased coordinate of a codeword can be recovered from a small number of other coordinates in that codeword. We construct LRC codes correcting more than one era
We give a method to construct Locally Recoverable Error-Correcting codes. This method is based on the use of rational maps between affine spaces. The recovery of erasures is carried out by Lagrangian interpolation in general and simply by one addition in some good cases.
A locally recoverable code is an error-correcting code such that any erasure in a coordinate of a codeword can be recovered from a set of other few coordinates. In this article we introduce a model of local recoverable codes that also includes local
A locally recoverable code is an error-correcting code such that any erasure in a single coordinate of a codeword can be recovered from a small subset of other coordinates. In this article we develop an algorithm that computes a recovery structure as