ﻻ يوجد ملخص باللغة العربية
Existing approaches for learning word embeddings often assume there are sufficient occurrences for each word in the corpus, such that the representation of words can be accurately estimated from their contexts. However, in real-world scenarios, out-of-vocabulary (a.k.a. OOV) words that do not appear in training corpus emerge frequently. It is challenging to learn accurate representations of these words with only a few observations. In this paper, we formulate the learning of OOV embeddings as a few-shot regression problem, and address it by training a representation function to predict the oracle embedding vector (defined as embedding trained with abundant observations) based on limited observations. Specifically, we propose a novel hierarchical attention-based architecture to serve as the neural regression function, with which the context information of a word is encoded and aggregated from K observations. Furthermore, our approach can leverage Model-Agnostic Meta-Learning (MAML) for adapting the learned model to the new corpus fast and robustly. Experiments show that the proposed approach significantly outperforms existing methods in constructing accurate embeddings for OOV words, and improves downstream tasks where these embeddings are utilized.
We propose a novel way to handle out of vocabulary (OOV) words in downstream natural language processing (NLP) tasks. We implement a network that predicts useful embeddings for OOV words based on their morphology and on the context in which they appe
Few-shot Named Entity Recognition (NER) exploits only a handful of annotations to identify and classify named entity mentions. Prototypical network shows superior performance on few-shot NER. However, existing prototypical methods fail to differentia
Spoken intent detection has become a popular approach to interface with various smart devices with ease. However, such systems are limited to the preset list of intents-terms or commands, which restricts the quick customization of personal devices to
In this paper, we propose a subspace representation learning (SRL) framework to tackle few-shot image classification tasks. It exploits a subspace in local CNN feature space to represent an image, and measures the similarity between two images accord
A recent approach for few-shot text classification is to convert textual inputs to cloze questions that contain some form of task description, process them with a pretrained language model and map the predicted words to labels. Manually defining this