ﻻ يوجد ملخص باللغة العربية
We classify topological defects in non-Hermitian systems with point gap, real gap and imaginary gap for all the Bernard-LeClair classes or generalized Bernard-LeClair classes in all dimensions. The defect Hamiltonian $H(bf{k}, {bf r})$ is described by a non-Hermitian Hamiltonian with spatially modulated adiabatical parameter ${bf r}$ surrounding the defect. While the non-Hermitian system with point gap belongs to any of 38 symmetry classes (Bernard-LeClair classes), for non-Hermitian systems with line-like gap we get 54 non-equivalent generalized Bernard-LeClair classes as a natural generalization of point gap classes. Although the classification of defects in Hermitian systems has been explored in the context of standard ten-fold Altland-Zirnbauer symmetry classes, a complete understanding of the role of the general non-Hermitian symmetries on the topological defects and their associated classification are still lacking. By continuous transformation and homeomorphic mapping, these non-Hermitian defect systems can be mapped to topologically equivalent Hermitian systems with associated symmetries, and we get the topological classification by classifying the corresponding Hermitian Hamiltonians. We discuss some non-trivial classes with point gap according to our classification table, and give explicitly the topological invariants for these classes. We also study some lattice or continuous models and discuss the correspondence between the topological number and zero modes at the topological defect.
The hallmark of symmetry-protected topological (SPT) phases is the existence of anomalous boundary states, which can only be realized with the corresponding bulk system. In this work, we show that for every Hermitian anomalous boundary mode of the te
We classify topological phases of non-Hermitian systems in the Altland-Zirnbauer classes with an additional reflection symmetry in all dimensions. By mapping the non-Hermitian system into an enlarged Hermitian Hamiltonian with an enforced chiral symm
Greens function in non-Hermitian systems has recently been revealed to be capable of directional amplification in some cases. The exact formulas for end-to-end Greens functions are significantly important for both studies of non-Hermitian systems and
For ordinary hermitian Hamiltonians, the states show the Kramers degeneracy when the system has a half-odd-integer spin and the time reversal operator obeys Theta^2=-1, but no such a degeneracy exists when Theta^2=+1. Here we point out that for non-h
Topological stability of the edge states is investigated for non-Hermitian systems. We examine two classes of non-Hermitian Hamiltonians supporting real bulk eigenenergies in weak non-Hermiticity: SU(1,1) and SO(3,2) Hamiltonians. As an SU(1,1) Hamil