ﻻ يوجد ملخص باللغة العربية
We classify topological phases of non-Hermitian systems in the Altland-Zirnbauer classes with an additional reflection symmetry in all dimensions. By mapping the non-Hermitian system into an enlarged Hermitian Hamiltonian with an enforced chiral symmetry, our topological classification is thus equivalent to classifying Hermitian systems with both chiral and reflection symmetries, which effectively change the classifying space and shift the periodical table of topological phases. According to our classification tables, we provide concrete examples for all topologically nontrivial non-Hermitian classes in one dimension and also give explicitly the topological invariant for each nontrivial example. Our results show that there exist two kinds of topological invariants composed of either winding numbers or $mathbb{Z}_2$ numbers. By studying the corresponding lattice models under the open boundary condition, we unveil the existence of bulk-edge correspondence for the one-dimensional topological non-Hermitian systems characterized by winding numbers, however we did not observe the bulk-edge correspondence for the $mathbb{Z}_2$ topological number in our studied $mathbb{Z}_2$-type model.
We classify topological defects in non-Hermitian systems with point gap, real gap and imaginary gap for all the Bernard-LeClair classes or generalized Bernard-LeClair classes in all dimensions. The defect Hamiltonian $H(bf{k}, {bf r})$ is described b
Recently, topological phases in non-Hermitian systems have attracted much attention because non-Hermiticity sometimes gives rise to unique phases with no Hermitian counterparts. Non-Hermitian Bloch Hamiltonians can always be mapped to doubled Hermiti
The hallmark of symmetry-protected topological (SPT) phases is the existence of anomalous boundary states, which can only be realized with the corresponding bulk system. In this work, we show that for every Hermitian anomalous boundary mode of the te
Topological stability of the edge states is investigated for non-Hermitian systems. We examine two classes of non-Hermitian Hamiltonians supporting real bulk eigenenergies in weak non-Hermiticity: SU(1,1) and SO(3,2) Hamiltonians. As an SU(1,1) Hamil
A modified periodic boundary condition adequate for non-hermitian topological systems is proposed. Under this boundary condition a topological number characterizing the system is defined in the same way as in the corresponding hermitian system and he