ﻻ يوجد ملخص باللغة العربية
The number of spots on the surface of the Sun is one of the best tracers of solar variability we have. The sunspot number is not only known to change in phase with the 11-year solar cycles, but also to show variability on longer time scales. It is, however, not only the sunspot number that changes in connection with solar variability. The location of the spots on the solar surface is also known to change in phase with the 11-year solar cycle. This has traditionally been visualised in the so-called butterfly diagram, but this is only well constrained from the beginning of the 19th century. This is unfortunate, as knowledge about the butterfly diagram could aid our understanding of the variability and the Sun-Earth connection. As part of a larger review of the work done on sunspots by the Danish astronomer Christian Horrebow, we here present a reanalysis of Christian Horrebows notebooks covering the years 1761 and 1764 - 1777. These notebooks have been analysed in at least three earlier studies by Thiele (Astron. Nachr. 50, 257, 1859), dArrest (published in Wolf, Astron. Mitt. Eidgenoss. Sternwarte Zur. 4, 77, 1873) and Hoyt and Schatten (Solar Phys. 160, 387, 1995). In this article, we construct a complete record of sunspot positions covering the years 1761 and 1764 - 1777. The resulting butterfly diagram shows the characteristic structure known from observations in the 19th and 20th century. We do see some indications of equatorial sunspots in the observations we have from Cycle 1. However, in Cycle 2, which has much better coverage, we do not see such indications.
Between 1761 and 1776, Christian Horrebow made regular observations of sunspots from Rundetaarn in Copenhagen. Based on these observations he writes in 1775 that it appears that after the course of a certain number of years, the appearance of the Sun
A new software (Soonspot) for the determination of the heliographic coordinates and areas of sunspots from solar images is presented. This program is very user-friendly and the accuracy of its results has been checked by using solar images provided b
Reliable historical records of total solar irradiance (TSI) are needed for climate change attribution and research to assess the extent to which long-term variations in the Suns radiant energy incident on the Earth may exacerbate (or mitigate) the mo
We report observations of bright dots (BDs) in a sunspot penumbra using High Resolution Coronal Imager (Hi-C) data in 193 AA and examine their sizes, lifetimes, speeds, and intensities. The sizes of the BDs are on the order of 1arcsec and are therefo
Sunspots contain multiple small-scale structures in the umbra and in the penumbra. Despite extensive research on this subject in pre-Hinode era multiple questions concerning fine-scale structures of sunspots, their formation, evolution and decay rema