ترغب بنشر مسار تعليمي؟ اضغط هنا

Dynamics of a Persistent Insulator-to-Metal Transition in Strained Manganite Films

91   0   0.0 ( 0 )
 نشر من قبل Samuel Teitelbaum
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Transition metal oxides possess complex free energy surfaces with competing degrees of freedom. Photoexcitation allows shaping of such rich energy landscapes. In epitaxially strained $mathrm{La_{0.67}Ca_{0.33}MnO_3}$, optical excitation with a sub-100 fs pulse above $2 mathrm{mJ/cm^2}$ leads to a persistent metallic phase below 100 K. Using single-shot optical and terahertz spectroscopy, we show that this phase transition is a multi-step process. We conclude that the phase transition is driven by partial charge order melting, followed by growth of the persistent metallic phase on longer timescales. A time-dependent Ginzburg-Landau model can describe the fast dynamics of the reflectivity, followed by longer timescale in-growth of the metallic phase.



قيم البحث

اقرأ أيضاً

The insulator-to-metal transition (IMT) of the simple binary compound of vanadium dioxide VO$_2$ at $sim 340$ K has been puzzling since its discovery more than five decades ago. A wide variety of photon and electron probes have been applied in search of a satisfactory microscopic mechanistic explanation. However, many of the conclusions drawn have implicitly assumed a {em homogeneous} material response. Here, we reveal inherently {em inhomogeneous} behavior in the study of the dynamics of individual VO$_2$ micro-crystals using a combination of femtosecond pump-probe microscopy with nano-IR imaging. The time scales of the photoinduced bandgap reorganization in the ultrafast IMT vary from $simeq 40 pm 8$ fs, i.e., shorter than a suggested phonon bottleneck, to $sim 200pm20$ fs, with an average value of $80 pm 25$ fs, similar to results from previous studies on polycrystalline thin films. The variation is uncorrelated with crystal size, orientation, transition temperature, and initial insulating phase. This together with details of the nano-domain behavior during the thermally-induced IMT suggests a significant sensitivity to local variations in, e.g., doping, defects, and strain of the microcrystals. The combination of results points to an electronic mechanism dominating the photoinduced IMT in VO$_2$, but also highlights the difficulty of deducing mechanistic information where the intrinsic response in correlated matter may not yet have been reached.
NiO thin films with various strains were grown on SrTiO3 (STO) and MgO substrates using a pulsed laser deposition technique. The films were characterized using an x-ray diffractometer, atomic force microscopy, and infrared reflectance spectroscopy. T he films grown on STO (001) substrate show a compressive in-plane strain which increases as the film thickness is reduced, resulting in an increase of the NiO phonon frequency. On the other hand, a tensile strain was detected in the NiO film grown on MgO (001) substrate which induces a softening of the phonon frequency. Overall, the variation of in-plane strain from -0.36% to +0.48% yields the decrease of the phonon frequency from 409.6 cm-1 to 377.5 cm-1 which occurs due to the ~1% change of the inter-atomic distances. The magnetic exchange -driven phonon splitting Delta(W) in three different sample, with relaxed (i.e. zero) strain, 0.36% compressive and 0.48% tensile strain was measured as a function of temperature. The Delta(W) increases on cooling in NiO relaxed film as in the previously published work on a bulk crystal. The splitting increases on cooling also in 0.48% tensile strained film, but Delta(W) is systematically 3-4 cm-1 smaller than in relaxed film. Since the phonon splitting is proportional to the non-dominant magnetic exchange interaction J1, the reduction of phonon splitting in tensile-strained film was explained by a diminishing J1 with lattice expansion. Increase of Delta(W) on cooling can be also explained by rising of J1 with reduced temperature.
A major challenge in condensed matter physics is active control of quantum phases. Dynamic control with pulsed electromagnetic fields can overcome energetic barriers enabling access to transient or metastable states that are not thermally accessible. Here we demonstrate strain-engineered tuning of La2/3Ca1/3MnO3 into an emergent charge-ordered insulating phase with extreme photo-susceptibility where even a single optical pulse can initiate a transition to a long-lived metastable hidden metallic phase. Comprehensive single-shot pulsed excitation measurements demonstrate that the transition is cooperative and ultrafast, requiring a critical absorbed photon density to activate local charge excitations that mediate magnetic-lattice coupling that, in turn, stabilize the metallic phase. These results reveal that strain engineering can tune emergent functionality towards proximal macroscopic states to enable dynamic ultrafast optical phase switching and control.
Heterostructures of mixed-valence manganites are still under intense scrutiny, due to the occurrence of exotic quantum phenomena linked to electronic correlation and interfacial composition. For instance, if two anti-ferromagnetic insulators as LaMnO $_3$ and SrMnO$_3$ are grown in a (001)-oriented superlattice, a half-metallic ferromagnet may form, provided that the thickness is sufficiently small to allow tunneling across interfaces. In this article, we employ electronic structure calculations to show that all the layers of a (111)-oriented LaMnO$_3$|SrMnO$_3$ superlattice retain a half-metallic ferromagnetic character for a much larger thickness than in its (001) counterpart. This behavior is shown to be linked to the charge transfer across the interface, favored by the octahedral connectivity between the layers. This also results in a symmetry-induced quenching of the Jahn-Teller distortions, which are replaced by breathing modes. The latter are coupled to charge and spin oscillations, whose components have a pure e g character. Most interestingly, the magnetization reaches its maximum value inside the LaMnO$_3$ region and not at the interface, which is fundamentally different from what observed for the (001) orientation. The analysis of the inter-atomic exchange coupling shows that the magnetic order arises from the double-exchange mechanism, despite competing interactions inside the SrMnO$_3$ region. Finally, the van Vleck distortions and the spin oscillations are found to be crucially affected by the variation of Hunds exchange and charge doping, which allows us to speculate that our system behaves as a Hunds metal, creating an interesting connection between manganites and nickelates.
146 - K.H.L Zhang , Y. Du , P. V. Sushko 2015
We have investigated the evolution of the electronic properties of La1-xSrxCrO3 (for the full range of x) epitaxial films deposited by molecular beam epitaxy (MBE) using x-ray diffraction, x-ray photoemission spectroscopy, Rutherford backscattering s pectrometry, x-ray absorption spectroscopy, electrical transport, and ab initio modeling. LaCrO3 is an antiferromagnetic insulator whereas SrCrO3 is a metal. Substituting Sr2+ for La3+ in LaCrO3 effectively dopes holes into the top of valence band, leading to Cr4+ (3d2) local electron configurations. Core-level and valence-band features monotonically shift to lower binding energy with increasing x, indicating downward movement of the Fermi level toward the valence band maximum. The material becomes a p-type semiconductor at lower doping levels and an insulator-to-metal transition is observed at x greater than or equal to 0.65, but only when the films are deposited with in-plane compression via lattice-mismatched heteroepitaxy. Valence band x-ray photoemission spectroscopy reveals diminution of electronic state density at the Cr 3d t2g-derived top of the valence band while O K-edge x-ray absorption spectroscopy shows the development of a new unoccupied state above the Fermi level as holes are doped into LaCrO3. The evolution of these bands with Sr concentration is accurately captured using density functional theory with a Hubbard U correction of 3.0 eV (DFT + U). Resistivity data in the semiconducting regime (x less than or equal to 0.50) do not fit perfectly well to either a polaron hopping or band conduction model, but are best interpreted in terms of a hybrid model. The activation energies extracted from these fits are well reproduced by DFT + U.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا