ﻻ يوجد ملخص باللغة العربية
We have investigated the evolution of the electronic properties of La1-xSrxCrO3 (for the full range of x) epitaxial films deposited by molecular beam epitaxy (MBE) using x-ray diffraction, x-ray photoemission spectroscopy, Rutherford backscattering spectrometry, x-ray absorption spectroscopy, electrical transport, and ab initio modeling. LaCrO3 is an antiferromagnetic insulator whereas SrCrO3 is a metal. Substituting Sr2+ for La3+ in LaCrO3 effectively dopes holes into the top of valence band, leading to Cr4+ (3d2) local electron configurations. Core-level and valence-band features monotonically shift to lower binding energy with increasing x, indicating downward movement of the Fermi level toward the valence band maximum. The material becomes a p-type semiconductor at lower doping levels and an insulator-to-metal transition is observed at x greater than or equal to 0.65, but only when the films are deposited with in-plane compression via lattice-mismatched heteroepitaxy. Valence band x-ray photoemission spectroscopy reveals diminution of electronic state density at the Cr 3d t2g-derived top of the valence band while O K-edge x-ray absorption spectroscopy shows the development of a new unoccupied state above the Fermi level as holes are doped into LaCrO3. The evolution of these bands with Sr concentration is accurately captured using density functional theory with a Hubbard U correction of 3.0 eV (DFT + U). Resistivity data in the semiconducting regime (x less than or equal to 0.50) do not fit perfectly well to either a polaron hopping or band conduction model, but are best interpreted in terms of a hybrid model. The activation energies extracted from these fits are well reproduced by DFT + U.
We have synthesized epitaxial NdNiO$_{3}$ ultra-thin films in a layer-by-layer growth mode under tensile and compressive strain on SrTiO$_{3}$ (001) and LaAlO$_3$ (001), respectively. A combination of X-ray diffraction, temperature dependent resistiv
The gigantic reduction of the electric resistivity under the applied magnetic field, CMR effect, is now widely accepted to appear in the vicinity of the insulator to metal transition of the perovskite manganites. Recently, we have discovered the firs
The pressure-induced insulator to metal transition (IMT) of layered magnetic nickel phosphorous tri-sulfide NiPS3 was studied in-situ under quasi-uniaxial conditions by means of electrical resistance (R) and X-ray diffraction (XRD) measurements. This
We studied the electronic and magnetic dynamics of ferromagnetic insulating BaFeO3 thin films by using pump-probe time-resolved resonant x-ray reflectivity at the Fe 2p edge. By changing the excitation density, we found two distinctly different types
We investigate ultra-fast coherent quantum dynamics of undoped $text{BaBiO}_{3}$ driven by a strong laser pulse. Our calculations demonstrate that in a wide range of radiation frequencies and intensities the system undergoes a transient change from t