ترغب بنشر مسار تعليمي؟ اضغط هنا

A Quadrillion Standard Models from F-theory

274   0   0.0 ( 0 )
 نشر من قبل Ling Lin
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We present an explicit construction of ${cal O}(10^{15})$ globally consistent string compactifications that realize the exact chiral spectrum of the Standard Model of particle physics with gauge coupling unification in the context of F-theory. Utilizing the power of algebraic geometry, all global consistency conditions can be reduced to a single criterion on the base of the underlying elliptically fibered Calabi--Yau fourfolds. For toric bases, this criterion only depends on an associated polytope and is satisfied for at least ${cal O}(10^{15})$ bases, each of which defines a distinct compactification.



قيم البحث

اقرأ أيضاً

We revisit local F-theory SO(10) and SU(5) GUTs and analyze their properties within the framework of the maximal underlying E_8 symmetry in the elliptic fibration. We consider the symmetry enhancements along the intersections of seven-branes with the GUT surface and study in detail the embedding of the abelian factors undergoing monodromies in the covering gauge groups. We combine flux data from the successive breaking of SO(10) to SU(5) gauge symmetry and subsequently to the Standard Model one, and further constrain the parameters determining the models particle spectra. In order to eliminate dangerous baryon number violating operators we propose ways to construct matter parity like symmetries from intrinsic geometric origin. We study implementations of the resulting constrained scenario in specific examples obtained for a variety of monodromies.
We argue that the following three statements cannot all be true: (i) our vacuum is a type IIB / F-theory vacuum at moderate-to-large $h^{1,1}$, (ii) the $alpha$-expansion is controlled via the supergravity approximation, `a la the KKLT and LVS scenar ios, and (iii) there are no additional gauged sectors from seven-branes. Since nearly all known globally consistent F-theory models with the exact chiral spectrum of the Standard Model and gauge coupling unification occur at moderate $h^{1,1}$, this finding calls for new moduli stabilization scenarios or/and a rich seven-brane dark sector.
It has recently been shown that F-theory based constructions provide a potentially promising avenue for engineering GUT models which descend to the MSSM. In this note we show that in the presence of background fluxes, these models automatically achie ve hierarchical Yukawa matrices in the quark and lepton sectors. At leading order, the existence of a U(1) symmetry which is related to phase rotations of the internal holomorphic coordinates at the brane intersection point leads to rank one Yukawa matrices. Subleading corrections to the internal wave functions from variations in the background fluxes generate small violations of this U(1), leading to hierarchical Yukawa structures reminiscent of the Froggatt-Nielsen mechanism. The expansion parameter for this perturbation is in terms of alpha_(GUT)^(1/2). Moreover, we naturally obtain a hierarchical CKM matrix with V_(12) ~ V_(21) ~ epsilon, V_(23) ~ V_(32) ~ epsilon^(2), V_(13) ~ V_(31) ~ epsilon^(3), where epsilon ~ alpha_(GUT)^(1/2), in excellent agreement with observation.
Experimental data on the neutrino mixing and masses strongly suggest an underlying approximate symmetry of the relevant Yukawa superpotential terms. Intensive phenomenological explorations during the last decade indicate that permutation symmetries s uch as S_4, A_4 and their subgroups, under certain assumptions and vacuum alignments, predict neutrino mass textures compatible with such data. Motivated by these findings, in the present work we analyse the neutrino properties in F-theory GUT models derived in the framework of the maximal underlying E_8 symmetry in the elliptic fibration. More specifically, we consider local F-SU(5) GUT models and study in detail spectral cover geometries with monodromies associated to the finite symmetries S_4, A_4 and their transitive subgroups, including the dihedral group D_4 and Z_2 X Z_2. We discuss various issues that emerge in the implementation of S_4, A_4 neutrino models in the F-theory context and suggest how these can be resolved. Realistic models are presented for the case of monodromies based on their transitive subgroups. We exemplify this procedure with a detailed analysis performed for the case of Z_2 X Z_2 model.
In this paper we study the interplay between the recently proposed F-theory GUTs and cosmology. Despite the fact that the parameter range for F-theory GUT models is very narrow, we find that F-theory GUTs beautifully satisfy most cosmological constra ints without any further restrictions. The viability of the scenario hinges on the interplay between various components of the axion supermultiplet, which in F-theory GUTs is also responsible for breaking supersymmetry. In these models, the gravitino is the LSP and develops a mass by eating the axino mode. The radial component of the axion supermultiplet known as the saxion typically begins to oscillate in the early Universe, eventually coming to dominate the energy density. Its decay reheats the Universe to a temperature of ~ 1 GeV, igniting BBN and diluting all thermal relics such as the gravitino by a factor of ~ 10^(-4) - 10^(-5) such that gravitinos contribute a sizable component of the dark matter. In certain cases, non-thermally produced relics such as the axion, or gravitinos generated from the decay of the saxion can also contribute to the abundance of dark matter. Remarkably enough, this cosmological scenario turns out to be independent of the initial reheating temperature of the Universe. This is due to the fact that the initial oscillation temperature of the saxion coincides with the freeze out temperature for gravitinos in F-theory GUTs. We also find that saxion dilution is compatible with generating the desired baryon asymmetry from standard leptogenesis. Finally, the gravitino mass range in F-theory GUTs is 10-100 MeV, which interestingly coincides with the window of values required for the decay of the NLSP to solve the problem of Li(7) over-production.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا