ﻻ يوجد ملخص باللغة العربية
We derive some of the axioms of the algebraic theory of anyon [A. Kitaev, Ann. Phys., 321, 2 (2006)] from a conjectured form of entanglement area law for two-dimensional gapped systems. We derive the fusion rules of topological charges and show that the multiplicities of the fusion rules satisfy these axioms. Moreover, even though we make no assumption about the exact value of the constant sub-leading term of the entanglement entropy of a disk-like region, this term is shown to be equal to $ln mathcal{D}$, where $mathcal{D}$ is the total quantum dimension of the underlying anyon theory. These derivations are rigorous and follow from the entanglement area law alone. More precisely, our framework starts from two local entropic constraints, which are implied by the area law. From these constraints, we prove what we refer to as the isomorphism theorem. The existence of superselection sectors and fusion multiplicities follows from this theorem, even without assuming anything about the parent Hamiltonian. These objects and the axioms of the anyon theory are shown to emerge from the structure and the internal self-consistency relations of the information convex sets.
The entanglement transfer from electrons localized in a pair of quantum dots to circularly polarized photons is governed by optical selection rules, enforced by conservation of angular momentum. We point out that the transfer can not be achieved by m
We study the effect of symmetry breaking in a quantum phase transition on pairwise entanglement in spin-1/2 models. We give a set of conditions on correlation functions a model has to meet in order to keep the pairwise entanglement unchanged by a par
We introduce for SU(2) quantum spin systems the Valence Bond Entanglement Entropy as a counting of valence bond spin singlets shared by two subsystems. For a large class of antiferromagnetic systems, it can be calculated in all dimensions with Quantu
The multichannel Kondo model supports effective anyons on the partially screened impurity, as suggested by its fractional impurity entropy. It was recently demonstrated for the multi-impurity chiral Kondo model, that scattering of an electron through
We derive a general procedure for evaluating the ${rm n}$th derivative of a time-dependent operator in the Heisenberg representation and employ this approach to calculate the zeroth to third spectral moment sum rules of the retarded electronic Greens