ﻻ يوجد ملخص باللغة العربية
We introduce for SU(2) quantum spin systems the Valence Bond Entanglement Entropy as a counting of valence bond spin singlets shared by two subsystems. For a large class of antiferromagnetic systems, it can be calculated in all dimensions with Quantum Monte Carlo simulations in the valence bond basis. We show numerically that this quantity displays all features of the von Neumann entanglement entropy for several one-dimensional systems. For two-dimensional Heisenberg models, we find a strict area law for a Valence Bond Solid state and multiplicative logarithmic corrections for the Neel phase.
We calculate the bipartite von Neumann and second Renyi entanglement entropies of the ground states of spin-1/2 dimerized Heisenberg antiferromagnets on a square lattice. Two distinct dimerization patterns are considered: columnar and staggered. In b
By relating the ground state of Temperley-Lieb hamiltonians to partition functions of 2D statistical mechanics systems on a half plane, and using a boundary Coulomb gas formalism, we obtain in closed form the valence bond entanglement entropy as well
An isotropic anti-ferromagnetic quantum state on a square lattice is characterized by symmetry arguments only. By construction, this quantum state is the result of an underlying valence bond structure without breaking any symmetry in the lattice or s
We calculate exactly the von Neumann and topological entropies of the toric code as a function of system size and temperature. We do so for systems with infinite energy scale separation between magnetic and electric excitations, so that the magnetic
The trimer resonating valence bond (tRVB) state consisting of an equal-weight superposition of trimer coverings on a square lattice is proposed. A model Hamiltonian of the Rokhsar-Kivelson type for which the tRVB becomes the exact ground state is wri