ﻻ يوجد ملخص باللغة العربية
We show that it is possible to engineer magnetic multi-domain configurations without domain walls in a prototypical rare earth/transition metal ferrimagnet using keV He+ ion bombardment. We additionally shown that these patterns display a particularly stable magnetic configuration due to a deep minimum in the free energy of the system which is caused by flux closure and the corresponding reduction of the magnetostatic part of the total free energy. This is possible because light-ion bombardment differently affects an elements relative contribution to the effective properties of the ferrimagnet. The impact of bombardment is stronger for rare earth elements. Therefore, it is possible to influence the relative contributions of the two magnetic subsystems in a controlled manner. The selection of material system and the use of light-ion bombardment open a route to engineer domain patterns in continuous magnetic films much smaller than what is currently considered possible.
Noncollinear spin textures in ferromagnetic ultrathin films are currently the subject of renewed interest since the discovery of the interfacial Dzyaloshinskii-Moriya interaction (DMI). This antisymmetric exchange interaction selects a given chiralit
We have studied the magnetic properties of multilayers composed of ferromagnetic metal Co and heavy metals with strong spin orbit coupling (Pt and Ir). Multilayers with symmetric (ABA stacking) and asymmetric (ABC stacking) structures are grown to st
Spin wave, the collective excitation of magnetic order, is one of the fundamental angular momentum carriers in magnetic systems. Understanding the spin wave propagation in magnetic textures lies in the heart of developing pure magnetic information pr
Materials hosting magnetic skyrmions at room temperature could enable new computing architectures as well as compact and energetically efficient magnetic storage such as racetrack memories. In a racetrack device, information is coded by the presence/
The motion of magnetic domain walls in ultrathin magnetic heterostructures driven by current via the spin Hall torque is described. We show results from perpendicularly magnetized CoFeB|MgO heterostructures with various heavy metal underlayers. The d