ترغب بنشر مسار تعليمي؟ اضغط هنا

Hybrid chiral domain walls and skyrmions in magnetic multilayers

88   0   0.0 ( 0 )
 نشر من قبل Vincent Cros
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Noncollinear spin textures in ferromagnetic ultrathin films are currently the subject of renewed interest since the discovery of the interfacial Dzyaloshinskii-Moriya interaction (DMI). This antisymmetric exchange interaction selects a given chirality for the spin textures and allows stabilising configurations with nontrivial topology. Moreover, it has many crucial consequences on the dynamical properties of these topological structures, including chiral domain walls (DWs) and magnetic skyrmions. In the recent years the study of noncollinear spin textures has been extended from single ultrathin layers to magnetic multilayers with broken inversion symmetry. This extension of the structures in the vertical dimension allows very efficient current-induced motion and room-temperature stability for both Neel DWs and skyrmions. Here we show how in such multilayered systems the interlayer interactions can actually lead to more complex, hybrid chiral magnetisation arrangements. The described thickness-dependent reorientation of DWs is experimentally confirmed by studying demagnetised multilayers through circular dichroism in x-ray resonant magnetic scattering. We also demonstrate a simple yet reliable method for determining the magnitude of the DMI from static domains measurements even in the presence of these hybrid chiral structures, by taking into account the actual profile of the DWs. The advent of these novel hybrid chiral textures has far-reaching implications on how to stabilise and manipulate DWs as well as skymionic structures in magnetic multilayers.



قيم البحث

اقرأ أيضاً

Electrons which are slowly moving through chiral magnetic textures can effectively be described as if they where influenced by electromagnetic fields emerging from the real-space topology. This adiabatic viewpoint has been very successful in predicti ng physical properties of chiral magnets. Here, based on a rigorous quantum-mechanical approach, we unravel the emergence of chiral and topological orbital magnetism in one- and two-dimensional spin systems. We uncover that the quantized orbital magnetism in the adiabatic limit can be understood as a Landau-Peierls response to the emergent magnetic field. Our central result is that the spin-orbit interaction in interfacial skyrmions and domain walls can be used to tune the orbital magnetism over orders of magnitude by merging the real-space topology with the topology in reciprocal space. Our findings point out the route to experimental engineering of orbital properties of chiral spin systems, thereby paving the way to the field of chiral orbitronics.
169 - Jin Lan , Weichao Yu , Jiang Xiao 2020
Spin wave, the collective excitation of magnetic order, is one of the fundamental angular momentum carriers in magnetic systems. Understanding the spin wave propagation in magnetic textures lies in the heart of developing pure magnetic information pr ocessing schemes. Here we show that the spin wave propagation across a chiral domain wall follows simple geometric trajectories, similar to the geometric optics. And the geometric behaviors are qualitatively different in normally magnetized film and tangentially magnetized film. We identify the lateral shift, refraction, and total reflection of spin wave across a ferromagnetic domain wall. Moreover, these geometric scattering phenomena become polarization-dependent in antiferromagnets, indicating the emergence of spin wave birefringence inside antiferromagnetic domain wall.
The motion of magnetic domain walls in ultrathin magnetic heterostructures driven by current via the spin Hall torque is described. We show results from perpendicularly magnetized CoFeB|MgO heterostructures with various heavy metal underlayers. The d omain wall moves along or against the current flow depending on the underlayer material. The direction to which the domain wall moves is associated with the chirality of the domain wall spiral formed in these heterostructures. The one-dimensional model is used to describe the experimental results and extract parameters such as the Dzyaloshinskii-Moriya exchange constant which is responsible for the formation of the domain wall spiral. Fascinating effects arising from the control of interfaces in magnetic heterostructures are described.
108 - F.G. Aliev , R. Schad , A. Volodin 2003
For antiferromagnetically coupled Fe/Cr multilayers the low field contribution to the resistivity, which is caused by the domain walls, is strongly enhanced at low temperatures. The low temperature resistivity varies according to a power law with the exponent about 0.7 to 1. This behavior can not be explained assuming ballistic electron transport through the domain walls. It is necessary to invoke the suppression of anti-localization effects (positive quantum correction to conductivity) by the nonuniform gauge fields caused by the domain walls.
We report on a general principle using the interlayer exchange coupling to extend the regime of chiral magnetic films in which stable or metastable magnetic skyrmions can appear at zero magnetic field. We verify this concept on the basis of a first-p rinciples model for a Mn monolayer on W(001) substrate, a prototype chiral magnet for which the atomic-scale magnetic texture is determined by the frustration of exchange interactions, impossible to unwind by laboratory magnetic fields. By means of textit{ab initio} calculations for the Mn/W$_m$/Co$_n$/Pt/W(001) multilayer system we show that for certain thicknesses $m$ of the W spacer and $n$ of the Co reference layer, the effective field of the reference layer fully substitutes the required magnetic field for skyrmion formation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا