ﻻ يوجد ملخص باللغة العربية
We report on the energy, timing, and pulse-shape discrimination performance of cylindrical 5 cm diameter x 5 cm thick and 7 cm diameter x 7 cm thick {it trans}-stilbene crystals read out with the passively summed output of three different commercial silicon photo-multiplier arrays. Our results indicate that using the summed output of an 8x8 array of SiPMs provides performance competitive with photo-multiplier tubes for many neutron imaging and correlated particle measurements: for the 5x5 cm crystal read out with SensLs ArrayJ-60035_64P-PCB, which had the best overall properties, we measure the energy resolution as 13.6$pm$1.8% at 341 keVee, the timing resolution in the 100--400 keVee range as 277$pm$34 ps, and the pulse-shape discrimination figure-of-merit as 2.21$pm$0.03 in the 230--260 keVee energy range. These results enable many scintillator-based instruments to enjoy the size, robustness, and power benefits of silicon photo-multiplier arrays as replacement for the photo-multiplier tubes that are predominantly used today.
In neutrino experiments, hemispherical photomultiplier tubes (PMTs) are often used to cover large surfaces or volumes to maximize the photocathode coverage with a minimum number of channels. Instrumentation is often coarse, and neutrino event reconst
We report radiation hardness tests performed at the Frascati Neutron Generator on silicon Photo-Multipliers, semiconductor photon detectors built from a square matrix of avalanche photo-diodes on a silicon substrate. Several samples from different ma
The goal of Double Chooz experiment is a precise measurement of the last unknown mixing angle theta_13 using two identical detectors placed at far and near sites from Chooz reactor cores. The detector is optimized for reactor-neutrino detection using
Silicon Photo-Multipliers (SiPMs) are semiconductor-based photo-detectors with performances similar to the traditional Photo-Multiplier Tubes (PMTs). An increasing number of experiments dedicated to particle detection in colliders, accelerators, astr
Muon beam monitoring is indispensable for indirectly monitoring accelerator-produced neutrino beams in real time. Though Si photodiodes and ionization chambers have been successfully used as muon monitors at the T2K experiment, sensors that are more