ترغب بنشر مسار تعليمي؟ اضغط هنا

A new electron-multiplier-tube-based beam monitor for muon monitoring at the T2K experiment

132   0   0.0 ( 0 )
 نشر من قبل Yosuke Ashida
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Muon beam monitoring is indispensable for indirectly monitoring accelerator-produced neutrino beams in real time. Though Si photodiodes and ionization chambers have been successfully used as muon monitors at the T2K experiment, sensors that are more radiation tolerant are desired for future operation. We have investigated the electron-multiplier tube (EMT) as a new sensor for muon monitoring. Secondary electrons produced by the passage of muons at dynodes are multiplied in the tube and produce signal. Two prototype detectors were installed at the T2K muon monitor location, and various EMT properties were studied based on in situ data taken with the T2K muon beam. The signal size is as expected based on calculation, and the EMTs show a sufficiently fast time response for bunch-by-bunch beam monitoring. The spill-by-spill intensity resolution is 0.4%, better than the required value (1%). Signal linearity within $pm$1% is achieved at proton beam powers up to 460 kW (with +250 kA focusing horn operation). A gradual signal decrease was observed during the initial exposure, due to the stabilization of dynode materials, before the response became stable within $pm$1%. This work demonstrates that EMTs are a good candidate for future muon monitoring at T2K, and may also have other more general applications.



قيم البحث

اقرأ أيضاً

This article describes the design and performance of the muon monitor for the T2K (Tokaito-Kamioka) long baseline neutrino oscillation experiment. The muon monitor consists of two types of detector arrays: ionization chambers and silicon PIN photodio des. It measures the intensity and profile of muons produced, along with neutrinos, in the decay of pions. The measurement is sensitive to the intensity and direction of the neutrino beam. The linearity and stability of the detectors were measured in beam tests to be within 2.4% and 1.5%, respectively. Based on the test results, the precision of the beam direction measured by the muon monitor is expected to be 0.25 mrad.
204 - K. Suzuki , S. Aoki , A. Ariga 2014
The Tokai-to-Kamioka (T2K) neutrino experiment measures neutrino oscillations by using an almost pure muon neutrino beam produced at the J-PARC accelerator facility. The T2K muon monitor was installed to measure the direction and stability of the muo n beam which is produced together with the muon neutrino beam. The systematic error in the muon beam direction measurement was estimated, using data and MC simulation, to be 0.28 mrad. During beam operation, the proton beam has been controlled using measurements from the muon monitor and the direction of the neutrino beam has been tuned to within 0.3 mrad with respect to the designed beam-axis. In order to understand the muon beam properties,measurement of the absolute muon yield at the muon monitor was conducted with an emulsion detector. The number of muon tracks was measured to be $(4.06pm0.05)times10^4$ cm$^{-2}$ normalized with $4times10^{11}$ protons on target with 250 kA horn operation. The result is in agreement with the prediction which is corrected based on hadron production data.
There is a long standing discrepancy between the Standard Model prediction for the muon g-2 and the value measured by the Brookhaven E821 Experiment. At present the discrepancy stands at about three standard deviations, with a comparable accuracy bet ween experiment and theory. Two new proposals -- at Fermilab and J-PARC -- plan to improve the experimental uncertainty by a factor of 4, and it is expected that there will be a significant reduction in the uncertainty of the Standard Model prediction. I will review the status of the planned experiment at Fermilab, E989, which will analyse 21 times more muons than the BNL experiment and discuss how the systematic uncertainty will be reduced by a factor of 3 such that a precision of 0.14 ppm can be achieved.
The Muon $g-2$ experiment, E989, is currently taking data at Fermilab with the aim of reducing the experimental error on the muon anomaly by a factor of four and possibly clarifying the current discrepancy with the theoretical prediction. A central c omponent of this four-fold improvement in precision is the laser calibration system of the calorimeters, which has to monitor the gain variations of the photo-sensors with a 0.04% precision on the short-term ($sim 1,$ms). This is about one order of magnitude better than what has ever been achieved for the calibration of a particle physics calorimeter. The system is designed to monitor also long-term gain variations, mostly due to temperature effects, with a precision below the per mille level. This article reviews the design, the implementation and the performance of the Muon $g-2$ laser calibration system, showing how the experimental requirements have been met.
The T2K experiment is a long-baseline neutrino oscillation experiment. Its main goal is to measure the last unknown lepton sector mixing angle {theta}_{13} by observing { u}_e appearance in a { u}_{mu} beam. It also aims to make a precision measureme nt of the known oscillation parameters, {Delta}m^{2}_{23} and sin^{2} 2{theta}_{23}, via { u}_{mu} disappearance studies. Other goals of the experiment include various neutrino cross section measurements and sterile neutrino searches. The experiment uses an intense proton beam generated by the J-PARC accelerator in Tokai, Japan, and is composed of a neutrino beamline, a near detector complex (ND280), and a far detector (Super-Kamiokande) located 295 km away from J-PARC. This paper provides a comprehensive review of the instrumentation aspect of the T2K experiment and a summary of the vital information for each subsystem.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا