ﻻ يوجد ملخص باللغة العربية
Sparse spectral methods for solving partial differential equations have been derived in recent years using hierarchies of classical orthogonal polynomials on intervals, disks, and triangles. In this work we extend this methodology to a hierarchy of non-classical orthogonal polynomials on disk slices (e.g. a half-disk) and trapeziums. This builds on the observation that sparsity is guaranteed due to the boundary being defined by an algebraic curve, and that the entries of partial differential operators can be determined using formulae in terms of (non-classical) univariate orthogonal polynomials. We apply the framework to solving the Poisson, variable coefficient Helmholtz, and Biharmonic equations.
In recent years, sparse spectral methods for solving partial differential equations have been derived using hierarchies of classical orthogonal polynomials on intervals, disks, disk-slices and triangles. In this work we extend the methodology to a hi
In this paper, we define new unfitted finite element methods for numerically approximating the solution of surface partial differential equations using bulk finite elements. The key idea is that the $n$-dimensional hypersurface, $Gamma subset mathbb{
The numerical solution of differential equations can be formulated as an inference problem to which formal statistical approaches can be applied. However, nonlinear partial differential equations (PDEs) pose substantial challenges from an inferential
In this paper, we present and study discontinuous Galerkin (DG) methods for one-dimensional multi-symplectic Hamiltonian partial differential equations. We particularly focus on semi-discrete schemes with spatial discretization only, and show that th
We develop a unified theory for continuous in time finite element discretisations of partial differential equations posed in evolving domains including the consideration of equations posed on evolving surfaces and bulk domains as well coupled surface