ترغب بنشر مسار تعليمي؟ اضغط هنا

L1-ROC and R2-ROC: L1- and R2-based Reduced Over-Collocation methods for parametrized nonlinear partial differential equations

89   0   0.0 ( 0 )
 نشر من قبل Yanlai Chen
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The onerous task of repeatedly resolving certain parametrized partial differential equations (pPDEs) in, e.g. the optimization context, makes it imperative to design vastly more efficient numerical solvers without sacrificing any accuracy. The reduced basis method (RBM) presents itself as such an option. With a mathematically rigorous error estimator, RBM seeks a surrogate solution in a carefully-built subspace of the parameter-induced high fidelity solution manifold. It can improve efficiency by several orders of magnitudes leveraging an offline-online decomposition procedure. However, this decomposition, usually through the empirical interpolation method (EIM) when the PDE is nonlinear or its parameter dependence nonaffine, is either challenging to implement, or severely degrading to the online efficiency. In this paper, we augment and extend the EIM approach in the context of solving pPDEs in two different ways, resulting in the Reduced Over-Collocation methods (ROC). These are stable and capable of avoiding the efficiency degradation inherent to a direct application of EIM. There are two ingredients of these methods. First is a strategy to collocate at about twice as many locations as the number of bases for the surrogate space. The second is an efficient approach for the strategic selection of the parameter values to build the reduced solution space for which we study two choices, a recent empirical L1 approach and a new indicator based on the reduced residual. Together, these two ingredients render the schemes, L1-ROC and R2-ROC, online efficient and immune from the efficiency degradation of EIM for nonlinear and nonaffine problems offline and online. Numerical tests on three different families of nonlinear problems demonstrate the high efficiency and accuracy of these new algorithms and their superior stability performance.



قيم البحث

اقرأ أيضاً

The task of repeatedly solving parametrized partial differential equations (pPDEs) in, e.g. optimization or interactive applications, makes it imperative to design highly efficient and equally accurate surrogate models. The reduced basis method (RBM) presents as such an option. Enabled by a mathematically rigorous error estimator, RBM constructs a low-dimensional subspace of the parameter-induced high fidelity solution manifold from which an approximate solution is computed. It can improve efficiency by several orders of magnitudes leveraging an offline-online decomposition procedure. However, this decomposition, usually through the empirical interpolation method (EIM) when the PDE is nonlinear or its parameter dependence nonaffine, is either challenging to implement, or severely degrades online efficiency. In this paper, we augment and extend the EIM approach as a direct solver, as opposed to an assistant, for solving nonlinear pPDEs on the reduced level. The resulting method, called Reduced Over-Collocation method (ROC), is stable and capable of avoiding the efficiency degradation inherent to a traditional application of EIM. Two critical ingredients of the scheme are collocation at about twice as many locations as the dimension of the reduced solution space, and an efficient L1-norm-based error indicator for the strategic selection of the parameter values to build the reduced solution space. Together, these two ingredients render the proposed L1-ROC scheme both offline- and online-efficient. A distinctive feature is that the efficiency degradation appearing in alternative RBM approaches that utilize EIM for nonlinear and nonaffine problems is circumvented, both in the offline and online stages. Numerical tests on different families of time-dependent and steady-state nonlinear problems demonstrate the high efficiency and accuracy of L1-ROC and its superior stability performance.
The numerical solution of differential equations can be formulated as an inference problem to which formal statistical approaches can be applied. However, nonlinear partial differential equations (PDEs) pose substantial challenges from an inferential perspective, most notably the absence of explicit conditioning formula. This paper extends earlier work on linear PDEs to a general class of initial value problems specified by nonlinear PDEs, motivated by problems for which evaluations of the right-hand-side, initial conditions, or boundary conditions of the PDE have a high computational cost. The proposed method can be viewed as exact Bayesian inference under an approximate likelihood, which is based on discretisation of the nonlinear differential operator. Proof-of-concept experimental results demonstrate that meaningful probabilistic uncertainty quantification for the unknown solution of the PDE can be performed, while controlling the number of times the right-hand-side, initial and boundary conditions are evaluated. A suitable prior model for the solution of the PDE is identified using novel theoretical analysis of the sample path properties of Mat{e}rn processes, which may be of independent interest.
In recent years, sparse spectral methods for solving partial differential equations have been derived using hierarchies of classical orthogonal polynomials on intervals, disks, disk-slices and triangles. In this work we extend the methodology to a hi erarchy of non-classical multivariate orthogonal polynomials on spherical caps. The entries of discretisations of partial differential operators can be effectively computed using formulae in terms of (non-classical) univariate orthogonal polynomials. We demonstrate the results on partial differential equations involving the spherical Laplacian and biharmonic operators, showing spectral convergence.
Convergence of an adaptive collocation method for the stationary parametric diffusion equation with finite-dimensional affine coefficient is shown. The adaptive algorithm relies on a recently introduced residual-based reliable a posteriori error esti mator. For the convergence proof, a strategy recently used for a stochastic Galerkin method with an hierarchical error estimator is transferred to the collocation setting. Extensions to other variants of adaptive collocation methods (including the classical one proposed in the paper Dimension-adaptive tensor-product quadratuture Computing (2003) by T. Gerstner and M. Griebel) is explored.
This paper presents a novel semi-analytical collocation method to solve multi-term variable-order time fractional partial differential equations (VOTFPDEs). In the proposed method it employs the Fourier series expansion for spatial discretization, wh ich transforms the original multi-term VOTFPDEs into a sequence of multi-term variable-order time fractional ordinary differential equations (VOTFODEs). Then these VOTFODEs can be solved by using the recent-developed backward substitution method. Several numerical examples verify the accuracy and efficiency of the proposed numerical approach in the solution of multi-term VOTFPDEs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا