ﻻ يوجد ملخص باللغة العربية
We propose and demonstrate a novel method to reduce the pulse width and timing jitter of a relativistic electron beam through THz-driven beam compression. In this method the longitudinal phase space of a relativistic electron beam is manipulated by a linearly polarized THz pulse in a dielectric tube such that the bunch tail has a higher velocity than the bunch head, which allows simultaneous reduction of both pulse width and timing jitter after passing through a drift. In this experiment, the beam is compressed by more than a factor of four from 130 fs to 28 fs with the arrival time jitter also reduced from 97 fs to 36 fs, opening up new opportunities in using pulsed electron beams for studies of ultrafast dynamics. This technique extends the well known rf buncher to the THz frequency and may have a strong impact in accelerator and ultrafast science facilities that require femtosecond electron beams with tight synchronization to external lasers.
We propose and demonstrate a novel method to produce few-femtosecond electron beam with relatively low timing jitter. In this method a relativistic electron beam is compressed from about 150 fs (rms) to about 7 fs (rms, upper limit) with the wakefiel
Coulomb interaction between charged particles is a well-known phenomenon in many areas of researches. In general the Coulomb repulsion force broadens the pulse width of an electron bunch and limits the temporal resolution of many scientific facilitie
We present the first demonstration of THz-driven bunch compression and timing stabilization of a few-fC relativistic electron beam with kinetic energy of 2.5 MeV using quasi-single-cycle strong field THz radiation in a shorted parallel-plate structur
In modern high-gain free-electron lasers, ultra-fast photon pulses designed for studying chemical, atomic and biological systems are generated from a serial of behaviors of high-brightness electron beam at the time-scale ranging from several hundred
A dielectric-loaded linac powered by THz-pulses is one of the key parts of the Attosecond X-ray Science: Imaging and Spectroscopy (AXSIS) project at DESY, Hamburg. As in conventional accelerators, the AXSIS linac is designed to have phase velocity eq