ترغب بنشر مسار تعليمي؟ اضغط هنا

Femtosecond compression dynamics and timing jitter suppression in a terahertz-driven electron bunch compressor

58   0   0.0 ( 0 )
 نشر من قبل Emma Snively
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the first demonstration of THz-driven bunch compression and timing stabilization of a few-fC relativistic electron beam with kinetic energy of 2.5 MeV using quasi-single-cycle strong field THz radiation in a shorted parallel-plate structure. Compression by nearly a factor of 3 produced a 39 fs rms bunch length and a reduction in timing jitter by more than a factor of 2, to 31 fs rms, offering a significant improvement to beam performance for applications like ultrafast electron diffraction. This THz-driven technique provides a critical step towards unprecedented timing resolution in ultrafast sciences and other accelerator applications using femtosecond-scale electron beams.



قيم البحث

اقرأ أيضاً

We propose and demonstrate a novel method to reduce the pulse width and timing jitter of a relativistic electron beam through THz-driven beam compression. In this method the longitudinal phase space of a relativistic electron beam is manipulated by a linearly polarized THz pulse in a dielectric tube such that the bunch tail has a higher velocity than the bunch head, which allows simultaneous reduction of both pulse width and timing jitter after passing through a drift. In this experiment, the beam is compressed by more than a factor of four from 130 fs to 28 fs with the arrival time jitter also reduced from 97 fs to 36 fs, opening up new opportunities in using pulsed electron beams for studies of ultrafast dynamics. This technique extends the well known rf buncher to the THz frequency and may have a strong impact in accelerator and ultrafast science facilities that require femtosecond electron beams with tight synchronization to external lasers.
We demonstrate the electromagnetic performance of waveguides for femtosecond electron beam bunch manipulation and compression with strong-field terahertz (THz) pulses. The compressor structure is a dispersion-free exponentially-tapered parallel-plate waveguide (PPWG) that can focus single-cycle THz pulses along one dimension. We show test results of the tapered PPWG structure using electro-optic sampling (EOS) at the interaction region with peak fields of at least 300 kV/cm given 0.9 uJ of incoming THz energy. We also present a modified shorted design of the tapered PPWG for better beam manipulation and reduced magnetic field as an alternative to a dual-feed approach. As an example, we demonstrate that with 5 uJ of THz energy, the PPWG compresses a 2.5 MeV electron bunch by a compression factor of more than 4 achieving a bunch length of about 18 fs.
We propose and demonstrate a novel method to produce few-femtosecond electron beam with relatively low timing jitter. In this method a relativistic electron beam is compressed from about 150 fs (rms) to about 7 fs (rms, upper limit) with the wakefiel d at THz frequency produced by a leading drive beam in a dielectric tube. By imprinting the energy chirp in a passive way, we demonstrate through laser-driven THz streaking technique that no additional timing jitter with respect to an external laser is introduced in this bunch compression process, a prominent advantage over the conventional method using radio-frequency bunchers. We expect that this passive bunching technique may enable new opportunities in many ultrashort-beam based advanced applications such as ultrafast electron diffraction and plasma wakefield acceleration.
With electron beam durations down to femtoseconds and sub-femtoseconds achievable in current state-of-the-art accelerators, longitudinal bunch length diagnostics with resolution at the attosecond level are required. In this paper, we present such a n ovel measurement device which combines a high power laser modulator with an RF deflecting cavity in the orthogonal direction. While the laser applies a strong correlated angular modulation to a beam, the RF deflector ensures the full resolution of this streaking effect across the bunch hence recovering the temporal beam profile with sub-femtosecond resolution. Preliminary measurements to test the key components of this concept were carried out at the Accelerator Test Facility (ATF) at Brookhaven National Laboratory recently, the results of which are presented and discussed here. Moreover, a possible application of the technique for novel accelerator schemes is examined based on simulations with the particle-tracking code elegant and our beam profile reconstruction tool.
112 - Andreas Gaupp 2013
In this note an electron bunch compressor is proposed based on FEL type interaction of the electron bunch with far infrared (FIR) radiation. This mechanism maintains phase space density and thus requires a high quality electron beam to produce bunches of the length of a few ten micrometer.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا