ﻻ يوجد ملخص باللغة العربية
In this paper, we investigate the statistical signal-processing algorithm to measure the instant local clock jump from the timing data of multiple pulsars. Our algorithm is based on the framework of Bayesian statistics. In order to make the Bayesian algorithm applicable with limited computational resources, we dedicated our efforts to the analytic marginalization of irrelevant parameters. We found that the widely used parameter for pulsar timing systematics, the `Efac parameter, can be analytically marginalized. This reduces the Gaussian likelihood to a function very similar to the Students $t$-distribution. Our iterative method to solve the maximum likelihood estimator is also explained in the paper. Using pulsar timing data from the Yunnan Kunming 40m radio telescope, we demonstrate the application of the method, where 80-ns level precision for the clock jump can be achieved. Such a precision is comparable to that of current commercial time transferring service using satellites. We expect that the current method could help developing the autonomous pulsar time scale.
Pulsar timing is a technique that uses the highly stable spin periods of neutron stars to investigate a wide range of topics in physics and astrophysics. Pulsar timing arrays (PTAs) use sets of extremely well-timed pulsars as a Galaxy-scale detector
The maximum frequency of gravitational waves (GWs) detectable with traditional pulsar timing methods is set by the Nyquist frequency ($f_{rm{Ny}}$) of the observation. Beyond this frequency, GWs leave no temporal-correlated signals; instead, they app
A pulsar timing array (PTA), in which observations of a large sample of pulsars spread across the celestial sphere are combined, allows investigation of global phenomena such as a background of gravitational waves or instabilities in atomic timescale
We extend profile domain pulsar timing to incorporate wide-band effects such as frequency-dependent profile evolution and broadband shape variation in the pulse profile. We also incorporate models for temporal variations in both pulse width and in th
We describe the procedure, nuances, issues, and choices involved in creating times-of-arrival (TOAs), residuals and error bars from a set of radio pulsar timing data. We discuss the issue of mis-matched templates, the problem that wide- bandwidth bac