ترغب بنشر مسار تعليمي؟ اضغط هنا

Pulsar Timing Array Experiments

133   0   0.0 ( 0 )
 نشر من قبل Joris Verbiest
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Pulsar timing is a technique that uses the highly stable spin periods of neutron stars to investigate a wide range of topics in physics and astrophysics. Pulsar timing arrays (PTAs) use sets of extremely well-timed pulsars as a Galaxy-scale detector with arms extending between Earth and each pulsar in the array. These challenging experiments look for correlated deviations in the pulsars timing that are caused by low-frequency gravitational waves (GWs) traversing our Galaxy. PTAs are particularly sensitive to GWs at nanohertz frequencies, which makes them complementary to other space- and ground-based detectors. In this chapter, we will describe the methodology behind pulsar timing; provide an overview of the potential uses of PTAs; and summarise where current PTA-based detection efforts stand. Most predictions expect PTAs to successfully detect a cosmological background of GWs emitted by supermassive black-hole binaries and also potentially detect continuous-wave emission from binary supermassive black holes, within the next several years.



قيم البحث

اقرأ أيضاً

199 - R. N. Manchester 2012
A pulsar timing array (PTA), in which observations of a large sample of pulsars spread across the celestial sphere are combined, allows investigation of global phenomena such as a background of gravitational waves or instabilities in atomic timescale s that produce correlated timing residuals in the pulsars of the array. The Parkes Pulsar Timing Array (PPTA) is an implementation of the PTA concept based on observations with the Parkes 64-m radio telescope. A sample of 20 millisecond pulsars is being observed at three radio-frequency bands, 50cm (~700 MHz), 20cm (~1400 MHz) and 10cm (~3100 MHz), with observations at intervals of 2 - 3 weeks. Regular observations commenced in early 2005. This paper describes the systems used for the PPTA observations and data processing, including calibration and timing analysis. The strategy behind the choice of pulsars, observing parameters and analysis methods is discussed. Results are presented for PPTA data in the three bands taken between 2005 March and 2011 March. For ten of the 20 pulsars, rms timing residuals are less than 1 microsec for the best band after fitting for pulse frequency and its first time derivative. Significant red timing noise is detected in about half of the sample. We discuss the implications of these results on future projects including the International Pulsar Timing Array (IPTA) and a PTA based on the Square Kilometre Array. We also present an extended PPTA data set that combines PPTA data with earlier Parkes timing data for these pulsars.
170 - M. Kerr , D. J. Reardon , G. Hobbs 2020
We describe 14 years of public data from the Parkes Pulsar Timing Array (PPTA), an ongoing project that is producing precise measurements of pulse times of arrival from 26 millisecond pulsars using the 64-m Parkes radio telescope with a cadence of ap proximately three weeks in three observing bands. A comprehensive description of the pulsar observing systems employed at the telescope since 2004 is provided, including the calibration methodology and an analysis of the stability of system components. We attempt to provide full accounting of the reduction from the raw measured Stokes parameters to pulse times of arrival to aid third parties in reproducing our results. This conversion is encapsulated in a processing pipeline designed to track provenance. Our data products include pulse times of arrival for each of the pulsars along with an initial set of pulsar parameters and noise models. The calibrated pulse profiles and timing template profiles are also available. These data represent almost 21,000 hrs of recorded data spanning over 14 years. After accounting for processes that induce time-correlated noise, 22 of the pulsars have weighted root-mean-square timing residuals of < 1 ${mu}$s in at least one radio band. The data should allow end users to quickly undertake their own gravitational-wave analyses (for example) without having to understand the intricacies of pulsar polarisation calibration or attain a mastery of radio-frequency interference mitigation as is required when analysing raw data files.
118 - S.-X Yi , S.-N. Zhang 2016
The maximum frequency of gravitational waves (GWs) detectable with traditional pulsar timing methods is set by the Nyquist frequency ($f_{rm{Ny}}$) of the observation. Beyond this frequency, GWs leave no temporal-correlated signals; instead, they app ear as white noise in the timing residuals. The variance of the GW-induced white noise is a function of the position of the pulsars relative to the GW source. By observing this unique functional form in the timing data, we propose that we can detect GWs of frequency $>$ $f_{rm{Ny}}$ (super-Nyquist frequency GWs; SNFGWs). We demonstrate the feasibility of the proposed method with simulated timing data. Using a selected dataset from the Parkes Pulsar Timing Array data release 1 and the North American Nanohertz Observatory for Gravitational Waves publicly available datasets, we try to detect the signals from single SNFGW sources. The result is consistent with no GW detection with 65.5% probability. An all-sky map of the sensitivity of the selected pulsar timing array to single SNFGW sources is generated, and the position of the GW source where the selected pulsar timing array is most sensitive to is $lambda_{rm{s}}=-0.82$, $beta_{rm{s}}=-1.03$ (rad); the corresponding minimum GW strain is $h=6.31times10^{-11}$ at $f=1times10^{-5}$ Hz.
We introduce pinta, a pipeline for reducing the upgraded Giant Metre-wave Radio Telescope (uGMRT) raw pulsar timing data, developed for the Indian Pulsar Timing Array experiment. We provide a detailed description of the workflow and usage of pinta, a s well as its computational performance and RFI mitigation characteristics. We also discuss a novel and independent determination of the relative time offsets between the different back-end modes of uGMRT and the interpretation of the uGMRT observation frequency settings, and their agreement with results obtained from engineering tests. Further, we demonstrate the capability of pinta to generate data products which can produce high-precision TOAs using PSR J1909-3744 as an example. These results are crucial for performing precision pulsar timing with the uGMRT.
We have constructed a new timescale, TT(IPTA16), based on observations of radio pulsars presented in the first data release from the International Pulsar Timing Array (IPTA). We used two analysis techniques with independent estimates of the noise mod els for the pulsar observations and different algorithms for obtaining the pulsar timescale. The two analyses agree within the estimated uncertainties and both agree with TT(BIPM17), a post-corrected timescale produced by the Bureau International des Poids et Mesures (BIPM). We show that both methods could detect significant errors in TT(BIPM17) if they were present. We estimate the stability of the atomic clocks from which TT(BIPM17) is derived using observations of four rubidium fountain clocks at the US Naval Observatory. Comparing the power spectrum of TT(IPTA16) with that of these fountain clocks suggests that pulsar-based timescales are unlikely to contribute to the stability of the best timescales over the next decade, but they will remain a valuable independent check on atomic timescales. We also find that the stability of the pulsar-based timescale is likely to be limited by our knowledge of solar-system dynamics, and that errors in TT(BIPM17) will not be a limiting factor for the primary goal of the IPTA, which is to search for the signatures of nano-Hertz gravitational waves.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا