ﻻ يوجد ملخص باللغة العربية
Magnetic skyrmions are nano-scale spin structures that are promising for ultra-dense memory and logic devices. Recent progresses in two-dimensional magnets encourage the idea to realize skyrmionic states in freestanding monolayers. However, monolayers such as CrI3 lack Dzyaloshinskii-Moriya interactions (DMI) and thus do not naturally exhibit skyrmions but rather a ferromagnetic state. Here we propose the fabrication of Cr(I,X)3 Janus monolayers, in which the Cr atoms are covalently bonded to the underlying I ions and top-layer Br or Cl atoms. By performing first-principles calculations and Monte-Carlo simulations, we identify strong enough DMI, which leads to not only helical cycloid phases, but also to intrinsic skyrmionic states in Cr(I,Br)3 and magnetic-field-induced skyrmions in Cr(I,Cl)3.
Two-dimensional (2D) intrinsic ferromagnetic semiconductors are expected to stand out in the spintronic field. Recently, the monolayer VI$_{3}$ has been experimentally synthesized but the weak ferromagnetism and low Curie temperature ($T_C$) limit it
We conduct a comprehensive study of three different magnetic semiconductors, CrI$_3$, CrBr$_3$, and CrCl$_3$, by incorporating both few- and bi-layer samples in van der Waals tunnel junctions. We find that the interlayer magnetic ordering, exchange g
Chromium trihalides, CrX$_3$ (with X = Cl, Br, I), are a family of layered magnetic materials that can be easily exfoliated to provide ferromagnetic monolayers. When two layers are stacked together to form a bilayer the interlayer exchange coupling c
Chromium trihalides (CrI$_3$, CrBr$_3$ and CrCl$_3$) form a prominent family of isostructural insulating layered materials in which ferromagnetic order has been observed down to the monolayer. Here we provide a comprehensive computational study of ma
We investigate the magnetic phase diagram of 1T-vanadium dichalcogenide monolayers in Janus configuration (VSeTe, VSSe, and VSTe) from first principles. The magnetic exchange, magnetocrystalline anisotropy and Dzyaloshinskii-Moriya interaction (DMI)