ترغب بنشر مسار تعليمي؟ اضغط هنا

Evolution of interlayer and intralayer magnetism in three atomically thin chromium trihalides

129   0   0.0 ( 0 )
 نشر من قبل Hyun Ho Kim
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We conduct a comprehensive study of three different magnetic semiconductors, CrI$_3$, CrBr$_3$, and CrCl$_3$, by incorporating both few- and bi-layer samples in van der Waals tunnel junctions. We find that the interlayer magnetic ordering, exchange gap, magnetic anisotropy, as well as magnon excitations evolve systematically with changing halogen atom. By fitting to a spin wave theory that accounts for nearest neighbor exchange interactions, we are able to further determine a simple spin Hamiltonian describing all three systems. These results extend the 2D magnetism platform to Ising, Heisenberg, and XY spin classes in a single material family. Using magneto-optical measurements, we additionally demonstrate that ferromagnetism can be stabilized down to monolayer in more isotropic CrBr$_3$, with transition temperature still close to that of the bulk.



قيم البحث

اقرأ أيضاً

90 - Marco Gibertini 2020
Chromium trihalides, CrX$_3$ (with X = Cl, Br, I), are a family of layered magnetic materials that can be easily exfoliated to provide ferromagnetic monolayers. When two layers are stacked together to form a bilayer the interlayer exchange coupling c an be either ferromagnetic or antiferromagnetic depending on the stacking sequence. Here we combine crystallographic arguments based on the close-packing condition with first-principles simulations to enumerate all possible stacking patterns in CrX$_3$ bilayers that preserve the spatial periodicity of each layer. We recover all configurations observed in bulk crystals and disclose stacking sequences with no bulk counterpart where the two layers have opposite chirality. Stacking sequences are ranked according to their relative stability and a preferential interlayer magnetic ordering is assigned to each of them. Simulations provide a consistent picture to frame all current experimental observations on bulk and exfoliated CrX$_3$ crystals, with interesting implications for future measurements, including synthetic bilayers with non-standard stacking patterns.
Stacking order can significantly influence the physical properties of two-dimensional (2D) van der Waals materials. The recent isolation of atomically thin magnetic materials opens the door for control and design of magnetism via stacking order. Here we apply hydrostatic pressure up to 2 GPa to modify the stacking order in a prototype van der Waals magnetic insulator CrI3. We observe an irreversible interlayer antiferromagnetic (AF) to ferromagnetic (FM) transition in atomically thin CrI3 by magnetic circular dichroism and electron tunneling measurements. The effect is accompanied by a monoclinic to a rhombohedral stacking order change characterized by polarized Raman spectroscopy. Before the structural change, the interlayer AF coupling energy can be tuned up by nearly 100% by pressure. Our experiment reveals interlayer FM coupling, which is the established ground state in bulk CrI3, but never observed in native exfoliated thin films. The observed correlation between the magnetic ground state and the stacking order is in good agreement with first principles calculations and suggests a route towards nanoscale magnetic textures by moire engineering.
Two-dimensional dilute magnetic semiconductors can provide fundamental insights in the very nature of magnetic orders and their manipulation through electron and hole doping. Despite the fundamental physics, due to the large charge density control ca pability in these materials, they can be extremely important in spintronics applications such as spin valve and spin-based transistors. In this article, we studied a two-dimensional dilute magnetic semiconductors consisting of phosphorene monolayer doped with cobalt atoms in substitutional and interstitial defects. We show that these defects can be stabilized and are electrically active. Furthermore, by including holes or electrons by a potential gate, the exchange interaction and magnetic order can be engineered, and may even induce a ferromagnetic-to-antiferromagnetic phase transition in p-doped phosphorene.
Atomically thin boron nitride (BN) nanosheets are important two-dimensional nanomaterials with many unique properties distinct from those of graphene, but the investigation of their mechanical properties still greatly lacks. Here we report that high- quality single-crystalline mono- and few-layer BN nanosheets are one of the strongest electrically insulating materials. More intriguingly, few-layer BN shows mechanical behaviors quite different from those of few-layer graphene under indentation. In striking contrast to graphene, whose strength decreases by more than 30% when the number of layers increases from 1 to 8, the mechanical strength of BN nanosheets is not sensitive to increasing thickness. We attribute this difference to the distinct interlayer interactions and hence sliding tendencies in these two materials under indentation. The significantly better mechanical integrity of BN nanosheets makes them a more attractive candidate than graphene for several applications, e.g. as mechanical reinforcements.
Magnetic skyrmions are nano-scale spin structures that are promising for ultra-dense memory and logic devices. Recent progresses in two-dimensional magnets encourage the idea to realize skyrmionic states in freestanding monolayers. However, monolayer s such as CrI3 lack Dzyaloshinskii-Moriya interactions (DMI) and thus do not naturally exhibit skyrmions but rather a ferromagnetic state. Here we propose the fabrication of Cr(I,X)3 Janus monolayers, in which the Cr atoms are covalently bonded to the underlying I ions and top-layer Br or Cl atoms. By performing first-principles calculations and Monte-Carlo simulations, we identify strong enough DMI, which leads to not only helical cycloid phases, but also to intrinsic skyrmionic states in Cr(I,Br)3 and magnetic-field-induced skyrmions in Cr(I,Cl)3.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا