ﻻ يوجد ملخص باللغة العربية
We investigate ground-state and finite temperature properties of the mixed-spin $(s, S)$ Kitaev model. When one of spins is half-integer and the other is integer, we introduce two kinds of local symmetries, which results in a macroscopic degeneracy in each energy level. Applying the exact diagonalization to several clusters with $(s, S)=(1/2, 1)$, we confirm the presence of this large degeneracy in the ground states, in contrast to the conventional Kitaev models. By means of the thermal pure quantum state technique, we calculate the specific heat, entropy, and spin-spin correlations in the system. We find that in the mixed-spin Kitaev model with $(s, S)=(1/2, 1)$, at least, the double peak structure appears in the specific heat and the plateau in the entropy at intermediate temperatures, indicating the existence of the spin fractionalization. Deducing the entropy in the mixed-spin system with $s, Sle 2$ systematically, we clarify that the smaller spin-$s$ is responsible for the thermodynamic properties at higher temperatures.
We present results on entropy and heat-capacity of the spin-S honeycomb-lattice Kitaev models using high-temperature series expansions and thermal pure quantum (TPQ) state methods. We study models with anisotropic couplings $J_z=1ge J_x=J_y$ for spin
Recent proposals for spin-1 Kitaev materials, such as honeycomb Ni oxides with heavy elements of Bi and Sb, have shown that these compounds naturally give rise to antiferromagnetic (AFM) Kitaev couplings. Conceptual interest in such AFM Kitaev system
Paramagnetic impurities in a quantum spin-liquid can result in Kondo effects with highly unusual properties. We have studied the effect of locally exchange-coupling a paramagnetic impurity with the spin-1/2 honeycomb Kitaev model in its gapless spin-
A minimal Kitaev-Gamma model has been recently investigated to understand various Kitaev systems. In the one-dimensional Kitaev-Gamma chain, an emergent SU(2)$_1$ phase and a rank-1 spin ordered phase with $O_hrightarrow D_4$ symmetry breaking were i
We consider the quasi-two-dimensional pseudo-spin-1/2 Kitaev - Heisenberg model proposed for A2IrO3 (A=Li, Na) compounds. The spin-wave excitation spectrum, the sublattice magnetization, and the transition temperatures are calculated in the random ph