ﻻ يوجد ملخص باللغة العربية
Paramagnetic impurities in a quantum spin-liquid can result in Kondo effects with highly unusual properties. We have studied the effect of locally exchange-coupling a paramagnetic impurity with the spin-1/2 honeycomb Kitaev model in its gapless spin-liquid phase. The (impurity) scaling equations are found to be insensitive to the sign of the coupling. The weak and strong coupling fixed points are stable, with the latter corresponding to a noninteracting vacancy and an interacting, spin-1 defect for the antiferromagnetic and ferromagnetic cases respectively. The ground state in the strong coupling limit in both cases has a nontrivial topology associated with a finite Z2 flux at the impurity site. For the antiferromagnetic case, this result can be obtained straightforwardly owing to the integrability of the Kitaev model with a vacancy. The strong-coupling limit of the ferromagnetic case is however nonintegrable, and we address this problem through exact-diagonalization calculations with finite Kitaev fragments. Our exact diagonalization calculations indicate that that the weak to strong coupling transition and the topological phase transition occur rather close to each other and are possibly coincident. We also find an intriguing similarity between the magnetic response of the defect and the impurity susceptibility in the two-channel Kondo problem.
Recent proposals for spin-1 Kitaev materials, such as honeycomb Ni oxides with heavy elements of Bi and Sb, have shown that these compounds naturally give rise to antiferromagnetic (AFM) Kitaev couplings. Conceptual interest in such AFM Kitaev system
In this work we investigate whether the Kitaev honeycomb model can serve as a starting point to realize the intriguing physics of the Sachdev-Ye-Kitaev model. The starting point is to strain the system which leads to flat bands reminiscent of Landau
We consider the quasi-two-dimensional pseudo-spin-1/2 Kitaev - Heisenberg model proposed for A2IrO3 (A=Li, Na) compounds. The spin-wave excitation spectrum, the sublattice magnetization, and the transition temperatures are calculated in the random ph
It is widely accepted that topological superconductors can only have an effective interpretation in terms of curved geometry rather than gauge fields due to their charge neutrality. This approach is commonly employed in order to investigate their pro
The S=3/2 Kitaev honeycomb model (KHM) has defied an analytical as well as numerical understanding because it is not exactly soluble like its S=1/2 brethren and in contrast to other spin-S Kitaev models numerical methods are plagued by a massive pile